Starting STM8 Microcontrollers

STMS8 microcontrollers are 8-bit general purpose microcontrollers from STMicroelectronics (STM).
STM is famous mainly for its line of 32-bit ARM Cortex microcontrollers — the STM32s. STM8
microcontrollers are rarely discussed in that context. However, STM8 MCUs are robust and most
importantly they come packed with lots of hardware features. Except for the ARM core, 32-bit
architecture, performance and some minor differences, STM8s have many peripheral similarities to
STM32s. In my opinion, STMS8s are equally or sometimes more matched than the popular PICs and
AVRs in all areas. Unlike PICs and AVRs however, | have seen STM8s mostly in various SMD packages.
Only a handful of STMS8 chips are available in PDIP/through-hole packages. | think it is a big reason for
which most small industries and hobbyists don’t play with them as much as with other 8-bit families.
People like to setup their test projects in breadboards, trial PCBs or strip-boards first, prototype and
then develop for production. To cope with this issue, STM has provided several affordable STM8
Discovery (Disco) boards to get started with. Besides there are many cheap STM8 breakout-boards
from China.

-
=

[«
g
)
2
' D
2
| o3
&
=
E
8

| have experience playing with AVRs, PICs, 8051s, STM32s, MSP430s, TivaC and so on. To be honest, |
thought learning about STM8 micros is a pure waste of time and energy. The learning curve will be
steep. Things and tools would be different and thus difficult. However, gradually | found these MCUs
very useful and there’s literally no complexity at all. The main drive factor for learning STM8s is the
price factor. They are hell cheap. When it comes down to other things, | have not found any book on
STM8s written in English. There’s literally no 100% complete blog post on the internet that shows the
basics. Similarly, same story with tools. | have been using MikroC for AVRs, 8051s and ARMs and it is
my favourite but at the time of writing, there’s no MikroC compiler for STM8 family. | have also not
stumbled upon any Arduino-like IDE that supports STM8 micros. Arduino-based solutions are also not
my favourite as they don’t go deep and have several limitations. Maybe it is not my luck. After much
study and search, | found out that there are a few C compilers for STM8s. However, any new tool is
both different and difficult at first. It is not always easy to adapt to new environments. You may never
know what unanticipated challenges and harshness a new environment may throw at you even when
you reach certain levels of expertise. | also don’t want to use any pirated software and so a free
compiler was a major requirement. | found out ST Visual Develop and Cosmic COSC compiler are both
free tools. Cosmic used to be a paid tool but now it is absolutely free. The only easy thing till then was
buying the STM8S Value Line Discovery board for just a few dollars and downloading the stuffs.

The STM8 Family

There are over a hundred STM8 microcontrollers available today. The STM8 family can be simplified
into three categorical groups as shown below.

STM8 microcontroller platform

130 nm EEPROM
technol T
i SGRSEVIRD
. N
Tools / \ ™ \

"\
Mainstream Automotive Ultra-low-power
Industrial and consumer STM8AL STM8BAF High-end analog IPs
Robust and reliable = AEC-Q100 AEC-Q100 Active halt
Upto 125°C Ultra-low-power Up to 150 °C <1 pA

There are subgroups within these groups but broadly speaking these three groups are what by which
we can define the entire family. STM8S micros are general purpose robust and reliable micros that
can be employed in almost all scopes. This is the most commonly used group and in fact we will be
exploring it in this article. They are also cheap and smart. The second group — the STM8A family is
intended mainly for automotive industries. This group is packed with additional hardware interfaces
like CAN and LIN that are musts according to present-day automotive industry doctrine. The STM8As
are also very robust and are designed to withstand the harsh extremes of an automobile. For instance,
STMS8As can withstand high temperatures, in excess of 100°C. The last group consists of STM8L micros
which are crafted for low power or battery-backed applications. Virtually they consume no power in
idle mode. Thus, if you need high power savings or energy cuts in your projects, this group is the best
choice. There are also low power versions of automotive-standard STM8 micros that are labelled
STMBSAL. Apart from all these there is also one version of STM8 micros that are specifically designed
for capacitive touch applications. These are called STMS8Ts.

The features and benefits of STM8 micros are numerous and can’t simply be expressed in few words.
The more you explore, the more you will feel. STM8s can be powered with 3.3V or 5V DC power
supplies and have built-in brownout detection circuitry. The low power editions can operate at much
lower voltages than these values. Official STM8 Discovery boards come with voltage selection jumpers
to allow users to select operating voltage level as required. There is very minimum risk of program
corruption due to EMI or some other similar unprecedented factors. There is fail-safe security for the
clock system which ensures that a system based on a STM8 micro won’t stop working or stuck up
should its external clock source fail. All internal hardware possesses more features than any other
competitive 8-bit microcontroller families that are widely available in the market. The best part is the
price benefit. You pay less for the most. All these features are well-suited for extremely harsh
industrial environments. STM8s are designed with maximum possible combinations of features.
Beyond your wildest wet dream, there are many extraordinary stuffs waiting to be unboxed.

Overview of the Discovery Board

For getting started with STM8s, STM has provided several STM8 Disco boards. There are also other
third party boards too. However, | strongly recommend Disco boards for learning and experimental
purposes. There are several reasons for this recommendation. One main reason is the fact that all
Disco boards come with on-board detachable ST-Link programmers and they are extremely cheap.
Shown below is the top layout of a STMS8S discovery board.

T usacmerer
%8 °, 8
|
E: =;.‘,_:m_._ LED (LD2)
lll° .

",, °°xm 0O o
===§=fn o, l

gooo T SWIM connactor
BB REEE Comng
o

USB connector

opoo

LED (LD2)

STLINK module
Mo ©

ST-LINK core
ST-LINK core

ST-UINK module

® SWIM connector
1 Possible separation point

°°
mmess ¢
000 «= -

LED (LD1)
Power supply jumper

External oscillator (16 MiH2) footprint
STMBS003K3T6

LED (LDY)
Power supply jumper

External oscillator (16 MHz) footprint
STMBS003K3TE

STMBSOAKATE module

STM8S003K3T6 module

om

° oooo - ™) User buion (B1) User bution (B1)
A
000000 00004 Waping seea Wrapping area
000000 __ __ 00000
088888 =_.= 233382 SO16 footprint =

<= Q000806

o0000 —— 00000 SO16 footprint
000000 &= &= 00000
000000 00000
000000 00000

The board | used here in this article hosts a STM8S003K3T6 micro. It is an 32 pin entry-level micro with
8kB flash, 1kB RAM and 128 byte true data EEPROM. It comes with some additional hardware —a LED
connected to PDO and a push button connected to PB7. Just as | said it also houses a detachable ST-
Link programmer. However, | don’t recommend separating the programmer from the whole package.
The board also has a prototyping area should one needs to prototype something. The overall board
has a small form-factor and is a bit longer than a standard credit card. There are several other similar
and popular STM8 Discovery boards like the STM8S105 Discovery.

There are also bulks of cheap Chinese minimum system STM8 dev boards hosting different STM8
chips. Overall the boards and the chips are so cheap that many simple cheap gadgets from China are
based on STM8 MCUs.

4 D5 D6 RST At A2 GND SV V) A3

S 000660060

. ‘ T Ty
©CO000O00O0DMNMO O
ODO0O0O0 00D OpPND s

Some cheap STM8-based simple products are shown below:

"] Yoo @R

The first one is a cheap DIY LC meter LC-100A. The other one is a simple DC panel meter. These are
just simple examples. There are many industrial and sophisticated products based on STM8 micros.

Hardware Tools

The list of hardware tools needed is not very long. We will obviously need a STM8 board and | prefer
a Discovery board over other boards since it comes with a built-in ST-Link programmer/debugger
hardware. If you have some other board like the ones | already showed, you will need a ST-Link
programmer. | recommend an additional ST-Link programmer apart from the one available on board.

ST-LINK/V2
ISOL

ST-LINK/V2 ST-LINK/V2-ISOL

ST-Link programmers/debuggers communicate with target STM8 micros via SWIM interface. This
interface is the standard for all STM8 micros. Basically, it is a four-wire interface with two wire (VDD
and GND) being used for powering the target. The rest two are reset I/0 and SWIM /0. In the official
ST-Link V2 programmer unlike other ST-Link programmers, there is a dedicated port for SWIM
interface with STM8 inscribed near it. Cheap USB flash drive-sized ST-Links are also available in the
market and they are portable and as good as the official ones.

=~ +5V
-~ SWIM
- GND
~ RESET

Sl WiIN |-

Apart from these we will also require some basic electronic lab stuffs like a USB-to-serial converter,
connecting/jumper wires, LEDs, buttons, various types of sensors, etc. that are typically found in a
common Arduino starter kit.

SAAAAARARRRAAAAAAAAAARAARAARARAN

J

(©00000@
f00000OO;
L 000000 e

1321N443M0d]

3

It is yet better if you have either a logic analyser or oscilloscope. A good multimeter and a well-
regulated DC power supply/source are must haves. You can also use a cell phone charging power bank
as a power source since Disco boards have USB ports.

Software Tools

Just like any other software developer, my choice of language for software development is C language.
| don’t want to spend time coding complex stuffs in assembly language. Apart from that | chose C
language for the fact that STMicroelectronics has provided a Standard Peripheral Library (SPL) that is
very easy to use. With SPL, it becomes totally unnecessary to program each register with meaningless
numbers and maintain coding sequence. We will never need to access registers for any reasons as
everything is done under the hood of SPL. All sequences are deal inside the SPL. All that we will ever
need is the clear concept of each hardware block, their working principles, their capabilities and
limitations.

We will need an Integrated Development Environment (IDE) and a C-language toolchain. The best
stuffs you can get your hands on at zero costs are ST Visual Develop (STVD) IDE and Cosmic C compiler.
Both are free but a rather difficult to use at first. STVD also comes with a programmer software tool
called ST Visual Programmer (STVP). We’ll need STVP to upload codes to target STM8 micros.

Cosmic used to be a paid tool just like your PC’s antivirus software but at the time of writing this article,
the Cosmic team has made it absolutely free for STM8 family. However, to use it you will need to
register and acquire a license key via email. Usually this procedure of acquiring license and registration
is maintained automatically by the software company’s server but with Cosmic it is different story.
You will need to wait for some guy at Cosmic end to respond to your license request. It may take a
few minutes or even a day but still the best part is getting a full version compiler for nothing.

B o8

| 3 B i
T | Bk e mRM G

A dx LW

G | G = Sl e &
W BR | whleipoh - Debig .

7 GPID_Teststn ~
=8 gpio_test project
£ 3 Source

2 PI0_Init{GRIOR, GPI0_PIN_7, GPIO_MODE JN_FL_NO_TT)
GPI_Init{GRIOD, GPIC_PIN 1, GPIO_MODE_OUT_PR_LOW FAST):

inputPin{GPIOE, GPIC_PIN_7) == FALSE)

while(GPI0_ ReadinputPin(GPIOB, GPIO_PIN_T) == FALSE]
it= 1,

EEEEEET

5

BT T]\ Build { Took | FrndinFies 1} FrndinFies2 }, Debug }\ Consle]
For Help. prest F1 n33.Cal31 MODIFED READ [C&P INUM TRL VR

You can get
STVD from here: http://www.st.com/en/development-tools/stvd-stm8.html and
Cosmic C compiler from here: http://www.cosmic-software.com/download.php.

http://www.st.com/en/development-tools/stvd-stm8.html
http://www.cosmic-software.com/download.php

You need to register in order to download both software. For Cosmic you will also need to acquire a
free license for it work. So just fill in some basic info about you.

‘ SMIC Embedded Innovation

ABOUT US NEWS & EVENTS CONTACT US PRODUCTS & SERVICES SUPPORT DOWNLOAD

Harmne Download £ stm8 FREE 32k

Register for the FREE stmB 32Kk version

Fill and submit the form below to dovnload the free stm2 compiler 32K version.

*Mamsa |

T Company |

Address

ZiPCode | |
City |
* Counfry |
Phone | |

Fax |
*E-mall |

*Nawslaiiar 0 1 sllow cosmic to accssionslly sand me & newslatter

A#DOWHLOADR ;;?supaoﬁ— Copyright @ 2012 Cosmic Software Ll @®cantact Us

Firstly, we will need to install STVD. Installation procedure is simple and same as typical software
installation. Just click next, next and next. After that we will need to install Cosmic C compiler. Again,
just next, next and next until the screen as shown below.

Select additional tasks

i you alrs

After installation, you'll prompted for licence. You must register your license unless you have already
registered. If you have already registered, then you’ll be asked if to overwrite registration. You should
skip reregistering.

COSMIC STMS 32K C Corr 3 |

REGISTER MOW TO GET YOUR FREE LITE VERSION TOOLS.
d l % YOU WILL THEN RECEIVE A PROPER LICEMSE TO USE THE SOFTWARE.

For the first run, you'll get the following screen looking for a valid license.

Caosmic 32K Compiler Re

REGISTER MO TO GET *¥OUR FREE LITE YERSION TOOLS

PRODUCT =S THE32K

HOSTID="435b3373d746 00254362501 3 104bd688a7 73"
USER=Enda-FG

DISPLAY=Enda_FG

HOSTMAME=Enda_FG

DISk_SERIAL_MUM=542612d1

Usger *:

Comparny *:

Addresz *:

Country *
Fhaone *: Fax: (Optional]
| o

Beqizter by Email Edit Email and Reqgister |

| Wwrite to File Cancel |

* 1 required.

You must fill all the starred (*) points to complete the process of registration. Select “Write to File”
option and save the file as a text (.txt) file. The file name should be “CM8_license.txt”. Send this file
to stm8 Free@cosmic.fr with subject “STM8FSE, STM32 32K License Request”. Now you'll need to

wait for the Cosmic team to respond to you. They’ll send you an email back with an electronic key license.
The file will have a name like “license.lic” and the email will have some instructions.

mailto:stm8_Free@cosmic.fr

This was my emailed license.

Garabline Amsar .@mm.ir s = 56 w®
o ma

W Categorize this message 31 Pemonal 2 Marver show this sgain =
Diar Sir.

Futhef i your regquesl, pleass find ediotad the "licees Be” Tl 13 use the STME Fres Specdal Edition
el TR 32K Complian

This. file has b ba copled in the “loense” sub-dreciory of the compilers.
Support |s done va
1} suppeor S freecosmic It o
2} i discursian forum on
. bl 5 T2 T i
Bt Ragards.
Diorsinique BROUTIN
COSMIC Software France
Supporting Embedded Innovation since 1983
Tel: 433 |,I}|1 4300 53 50
Fax: + il
il i fr
Wb sile: o cosmicsoltwane oom
ﬁ Cinby paint this mall If necessany

ﬁ Afin dr conbbisr e reapect di l'onirans sl e de n wgrine o conrnial gud B ndonLar
----- Message o origine----
e - Shawon shahnyar (maito
:rwwa 2 mardi 3 mai 21:'!6 15:38
: Fi
Objet © STHEFSE, STHH 12K License Request

u Garanll sans vins. www avasi com

§ Eensalic r‘

Once you get the license, you’ll need to show the software its location and complete the licensing
process as shown below. Save the license file in a secured location.

Your applcation wat nol able 1o oblan a koerse

because the FLEXnet Scende server manager ‘Your appheaton was not able 10 lind 8 beerize
mldneldumvhavolowwm fie or server for the FLEXnet License Sesver
data t needs. Please choose one of the Manager. Chooss the Hename you wank 1o use
folowra for 2 Bcene fie

Prass Firish 10 eatum to the
apphcaton

" Specily the Licenze Server System
& Speciy the License Fie

lm Filas [EENCOSMICVOSS TMB_32K\Bcena be

Copynght (¢) 1955-2009 Fleata Scltwars, Inc.

Carcel |

At the end of this process, we can enjoy the compiler without any limitations.

| also recommend that you download Sublime Text (https://www.sublimetext.com/) or Notepad++
(https://notepad-plus-plus.org/) for viewing your code with ease. These are very cool software. This
is not mandatory though.

https://www.sublimetext.com/
https://notepad-plus-plus.org/

STM8CubeMX

Should | or should | not feel fortunate was my question at the time of writing this article and that’s
because STM8CubeMX was released in late February 2017. Yes, that’s the time when | was compiling
all these STM8 stuffs together. Prior to that | was wondering about a software similar to
STM32CubeMX but for STM8s. Back then, | could not find one and raw documentations were only
helpers. Although it is still in its early stages of development and still not as robust as its STM32 cousin
in terms of code generation capabilities and other areas, we can expect great innovations in the near
future. It reminds me of the early days of STM32CubeMX. Not everyone expected it to overcome all
the challenges in a very short period of time. At present, we can use STM8CubeMX for common info
on STMS8 chips like pin assignments/mapping, basic technical specs like memory capacities, possible
clock configurations, etc. | can just wonder the potential future integrations and bug fixes. Power
consumption calculator is one such tool hopefully to be integrated. STM, most likely, has some serious
big plans for it. Nevertheless, we must thank STM for this cool software.

Visit http://www.st.com/en/development-tools/stm8cubemx.html to download STM8CubeMX.

@ STMECubeMX Untateck STMESO03K3T6C - 6 X
w Help

Fil

c T =@+ o4 A Dshowserlabd 7§

T

ROC_OSCIN

RCC_OsK

| recommend using it only as reference. Don’t make yourself dependent on it. There are still many
bugs fixes that are yet to be addressed. One example is as in the above screenshot. Notice Timer 3
(TIM3) is missing although STM8S003 has this timer. I'm pretty sure the software developers are
working hard on such silly issues. For now, it is more like a promise of good tidings to come. This is
why | haven’t included it in the “must-have” software list and wanted it to be discussed separately.

http://www.st.com/en/development-tools/stm8cubemx.html

Preparing the Software Tools

Firstly, we need three major documents before starting to program STM8 micros. These are as follows:

1. STMS8 Reference Manual.
http://www.st.com/content/ccc/resource/technical/document/reference manual/9a/1b/85
/07/ca/eb/4f/dd/CD00190271.pdf/files/CD00190271.pdf/jcr:content/translations/en.CD001

90271.pdf

2. Datasheet of the MCU (STM8S003) that we’ll be using.
http://www.st.com/content/ccc/resource/technical/document/datasheet/42/5a/27/87/ac/
5a/44/88/DM00024550.pdf/files/DM00024550.pdf/jcr:content/translations/en.DM0002455

0.pdf

3. STM8SVLDiscovery Board User Manual.
http://www.st.com/content/ccc/resource/technical/document/user manual/c8/37/11/ba/b
5/e7/4c/ee/DM00040810.pdf/files/DM00040810.pdf/jcr:content/translations/en.DM00040
810.pdf

These docs will be needed everywhere during learning session. The reference manual states the use
and purpose of all the hardware blocks in details. It includes register descriptions, naming conventions,
modes of operation of all hardware, etc. However, it does not specify the specifications of a given
STMS8 micro and that’s because it is a generalized literature for all STM8S and STM8AF micros. As we
know even within a family of micros, one MCU differs from another in many aspects. Most commonly
this variation comes in the form of memory capacities and I/O pin counts. Sometimes electrical specs
also vary and so to know the limits and general specs of our target MCUs we need to checkout their
respective datasheets. Lastly the Discovery board user manual is most useful for the hardware
schematics, pin assignments and layouts. If you are using some other board then | suggest that you
acquire at least its schematic.

Now with Cosmic, STVD and STVP installed our software tool setup is almost ready. There are two
approaches to STM8 programming. The first uses the traditional concepts of register-access-based
coding, meaning you’ll have to set up every register on your own. The second way utilizes a specialized
method of coding by using standard libraries developed by STM that are both universal and platform
independent, meaning your C code will be same for any compiler using these libraries. These libraries
are called Standard Peripheral Libraries (SPL). With these libraries, no one will ever need to get down
to register-level access. The libraries are so coded that a coder will only have to know his/her chips’
hardware specs and some basics of these hardware. On the coding part, he/she will only have to set
properties and desired values. The SPL manages the rest. For instance, when setting up a UART, we
will only need to set interrupts, 10s and UART properties like baud rate, parity, etc. All of these setups
are done with meaningful numbers and texts.

The STMicroelectronics Standard Peripheral Libraries (SPL) for STM8 microcontrollers can be found
here: http://www.st.com/en/embedded-software/stsw-stm8069.html.

http://www.st.com/content/ccc/resource/technical/document/reference_manual/9a/1b/85/07/ca/eb/4f/dd/CD00190271.pdf/files/CD00190271.pdf/jcr:content/translations/en.CD00190271.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/9a/1b/85/07/ca/eb/4f/dd/CD00190271.pdf/files/CD00190271.pdf/jcr:content/translations/en.CD00190271.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/9a/1b/85/07/ca/eb/4f/dd/CD00190271.pdf/files/CD00190271.pdf/jcr:content/translations/en.CD00190271.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/42/5a/27/87/ac/5a/44/88/DM00024550.pdf/files/DM00024550.pdf/jcr:content/translations/en.DM00024550.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/42/5a/27/87/ac/5a/44/88/DM00024550.pdf/files/DM00024550.pdf/jcr:content/translations/en.DM00024550.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/42/5a/27/87/ac/5a/44/88/DM00024550.pdf/files/DM00024550.pdf/jcr:content/translations/en.DM00024550.pdf
http://www.st.com/content/ccc/resource/technical/document/user_manual/c8/37/11/ba/b5/e7/4c/ee/DM00040810.pdf/files/DM00040810.pdf/jcr:content/translations/en.DM00040810.pdf
http://www.st.com/content/ccc/resource/technical/document/user_manual/c8/37/11/ba/b5/e7/4c/ee/DM00040810.pdf/files/DM00040810.pdf/jcr:content/translations/en.DM00040810.pdf
http://www.st.com/content/ccc/resource/technical/document/user_manual/c8/37/11/ba/b5/e7/4c/ee/DM00040810.pdf/files/DM00040810.pdf/jcr:content/translations/en.DM00040810.pdf
http://www.st.com/en/embedded-software/stsw-stm8069.html

| wrote this article using SPL since it will be ridiculous to code STM8s using the old-fashioned way of
configuring registers one-by-one manually. Thus, it is a mandatory download item. You should
preserve and retain the downloaded SPL zip file fully intact. You may need it when things get messy.

Now make two folders and name them “inc” and “src”. The “inc” folder will be filled with all the header
files (“.h” extension files) from the extracted zip file. Similarly, the “src” folder will be holding the
source files (“.c” extension files). For ease of work, it is better to keep these folders secured just like
the SPL zip file because every time when we will be making new projects the files in these folders will
be needed. You can copy these files to your project folder or you can keep it centrally somewhere. |
prefer the former method as doing so will not have any conflicting issue with other projects needing
modifications. However, it will cost hard-drive space. This method is however less confusing and
trouble-free for beginners. Extract all the files as shown below:

B ctmfs adcl.c

B stmifs awu.c

B strnds beep.c
B stm8s clk.c

B strmfs exticc

B ctmis flash.c

B stms gpio.c
B stmis i2cc

B ctmis itc.c

B strn8s iwdg.c
B ctmis rst.c

B =tmBs spi.c
B stmis timl.c

B ctmis tima.c

B stmfs timd.c

B ctmis uartl.c

B stmBs wwdg.c

stmds.h
stmds adcl.h

stmis awu.h

stmés beep.h
stmés clk.h

stmds conf.h
B stnlds extih
B stms flash.h

B strds gpio.h
B stmés iZc.h

B ctmis itc.h

B stmBs iwdg.h
B stms rst.h

B strmds spich
B strnls tim1.h

E stmfs tim2.h

B ctrfs timdh

B stmfs uaril.h

B strmis wwdg.h

Note that there are more header files than source files. This is because there are two extra header
files — stm8s.h and stm8s_conf.h that define processor type and processor properties. To make things
work, we will have to comment one line of the stm8s_conf.h. You will find a line at the bottom of this
file written as:

#define USE_FULL_ASSERT (1).

You need to comment or disable this line, otherwise the compiler will throw tons of error messages.
Always check this at the start of a project. Surely, we don’t want to assert our code.

Creating a New Code Project

Assuming that STVD, STVP and Cosmic are properly installed, we will see how to create a new project.
1. Firstly, run STVD.
2. Select File >> New Workspace.

[Ble Edit Yew Bropst Bukd Debug Debug instumment Tooks Window Help
T o o BB A W AEALSETE LR AR EELE EEEL
BB | B [vmmis s ol en ve 08 | D B A (3 80 Be ol B S8 S A Har LN

[

Mkhhhlkhhmz N0} Corsae]

e v waksmace nta WOOIFED el o NOM. fCrL v I

3. Select Create workspace and project.

Mew Workspace

Create Create empty Create from Wrap
workispace Workspace Project Executable
and project

Wrap Malefile

Woarkspace is an environment that can contain one or
several projects.

0K || Canesl

4. Select workspace folder and workspace name.

Mew Workspace

“Wworkspace filename

|tesﬂ |

Work zpace location

|E:HUsersHSShahryiarHDesktup'&Test_| ﬁ
k. Cancel

5. Set project name and select toolchain STM8 Cosmic. You may need to set the path of your
Cosmic compiler’s installation location. In my case, it is:

C:\Program Files (x86)\COSMIC\FSE_Compilers\CXSTM8

Mew Project

Project filename

|tE$t_|:ur|:u |

Project location
| C:hUzerssS5hahmiarsDesktophT est_| | [

Toalzhain
SThE Cosmic v

Taalzhain raoot
| C:%Program Files [<36)5\COSMICAWFSE_Co

k. Cancel

6. Type and select target chip part number. Last two or three digits and letters are enough for
finding the correct micro.

ML Selection

Filter
Show MCUs caontaining. .. |STMES ooz
FCL 2
STMAES003F3F % STice ~
STMB5003F 3U &% Sirmulator
Sl . £ Swim STice
5 Swim Rlink
5 Swim 5T-Link
4 Emu3
i Dwpd
4 led [ST Micro Connect ar O
i lod Rlink
4 lcd STice
. lod STick
+ EmuzB [Hdz2) W
| Select | L4 >
Selected MCL
|5THMB5003K3 |

7. Now add the source and header files from the previously mentioned SPL folder.

&4 5T Visual Develop - test.stw™

Eile Edit View Project Build Debug Debuginstrument Tools N

AT W S| o s@® [
D »> 'EZE B TFHTEFD E
| Workspace - x|
test.stw

=i le-sl_pro

S e File
B a Mew Folder...

stm8._i Add Files to Folder...
| nclude File emove from Project
Include Fil R f Proj
7] External Dey
= ! Settings...
Properties

Show full path
~ Add sorted elements

~ Allow Docking
Hide

5] Workspace

8. After file inclusions, the workspace tab changes as shown below.

Eile Edit View Preject Build Debug Debuginstrument Tools Window Help

B W S|[22 28 | v|E= 8§
00 » !'BRE B BPBTRE 0V 3 [
LWorkspace= - x|

stmBs_awu.c ~
strnds_beep.c
stms_clie.c
stmBs_exti.c
stmBs_flash.c
strnds_gpio.c
stms_iZc.c
stm@s_itc.c
stm@s_iwdg.c
stm8s_rst.c
strnds_spi.c
stm@s_tim1.c
stm@s_tim2.c
stz _timd.c
stms_uartl.c
stmis_wwdg.c
main.c

strnd_interrupt_vector.c
-3 Include Files
e[S stmésh
stmls_adcl.h
strns_awu.h
stmés_beep.h v

-mu|

9. Locate and open main.c file from the source tab, and then type #include "stm8s.h" at the top
as shown below:

- [main.c]

“Eile Edit View Preject Build Debug Debuginstrument Tools Window Help

BEed H &0 a8 V' o
00 » ! HEE B BPARED 8 |[lwbe _ vloa
| Workspace - x|
Py 1 Finclude "stmis.h"
2
3 main()
=23 Source Files 4 %‘{
stmBs_adcl.c 5 while (1);
stmBs_awu.c] 1

stmBs_beep.c
stmBs_clk.c
stms_exti.c
stm8s_flash.c
stmBs_gpio.c
stm8s_i2c.c
stmBs_ite.c
stmBs_iwdg.c
stms_rst.c
stmis_spi.c
stmBs_tim1l.c
stm8s_tim2.c
stm8s_timd.c
stmBs_uartl.c
stmis_wwdg.c
main.c

stm8_interrupt_vector.c
H@ Include Files v

10. You'll have to edit the STM8S.h header file and uncomment the chip number you are going to

use as shown below:

#a 5T Visual Develoy

p - GPIO.stw™ - [strn8s.h]

QEiIe Edit View Project Build Debug Debug instrument Tools Window Help

e - 3 == E% % Find g ﬁ i EB %
rj% 0% = SEE ‘ Fiint TRds RS Pge -:,Elo Bar‘ﬁe'? ag]ak Endule RemAll i ﬁgc i i
S T i - B 8
i G B b AL & el 1 R NP —ra— A}
| Workspace x|
GPIO.stw o 21 *WITHOUT WARRANTIES ONDITIONS OF ANY KIND, either express or implied.
- 22 * See the License for the ¢ language governing permissions and
B gpio 23 * limitations under the License.
=429 Source Files 24 *
rmain.c D5 | R
stms_adcl.c 26
stmis_awu.c &
- 28 /* Define to prevent recursive inclusion
stmés_beep.c 20 E#ifndsf _STMES_H
stmés_clk.c 30 #define __STMB5_H
stm8s_exti.c 31
stm8s_flash.c 32 * @addtogroup STME5_StdPeriph_Driver
stm@s_gpio.c gi . _:"‘“{
stms_ilc.c a5
stmls_itc.c 36 /" Uncomment the line below according to the target STMB5 or STMBA device used inyour
stmés_iwdg.c 37 application. */
stms_rst.c 38
B | s
stm8s_tim.c 41 #define 5
stmés_tim2.c 42 Zdefine High density de
stmés_timd.c 43 #define S High density de
stmés_uartl.c 44 /* #define § edium density dev
- 45 /* #define § alue Line Medium de
sths._wwdg.c 46 /* #define § Medium densi i
stm&_interrupt_vector.c a7 7* #define §
=--4=3 Include Files 48 /* #define §
stmis.h 49 #define STMB5003 7! falue Line Low den
stm8s_adcl.h 50 /* #define STME5903 */ AZS Low density devic
[E1 ctrnlle auni b 51

11. Compile the code once using the key combination CTRL+F7 or by pressing the compile button.
If everything is okay, there should be no error or warning message. The reason for this blank
compilation is to use the compiler’s powerful code assistant feature. With this feature, we can
predict or complete a piece of code line by only writing the first few letters and then pressing
CTRL + SPACE keys simultaneously.

evelop - test.stw” - [main.c *]

QEHe Edit View Project Build Debug Debuginstrument Tools Window Help

AEE @ &[22 e8] e MOTRe 4%%% OB ODEN PEE| &
00 ° 'HEH B HTHERY ¢ ebe voms o S@E L 8| ERED|Fe 0| wd?RR|

Workspace - x|

test.stw A ;_ Zinclude "stmis.h”

£ test_pro 2

[--4=4 Source Files N
5
6
7

main()

stmBs_adcl.c
stmBs_awu.c

GPIO_DE

GPIO_CR1_RESET VALUE A
GPIO_CR2_RESET VALUE
GPIO_DDR_RESET VALUE
v

stmBs_exti.c
stmBs_flash.c
stm8s_gpio.c
stm8s_i2c.c

stmBs_spi.c

stms_tim1.c

stmBs_tim2.c

stmBs_timd.c

stmés_uart1.c

stm8s_wwdg.c

main.c

stm_interrupt_vector.c

(-4 Include Files v

mmaue

mainc*

During compilation, you may get tons of errors for hardware files that are not available in your target
STM8S micro. For instance, CAN hardware is not available in STM8S003K3 and so if you have added
CAN source and header files you will get an error for that. Once identified by the error messages, the
corresponding header and source files for that particular hardware must be removed.

Similarly, one more caution must be observed. Unless your code is using any interrupt, interrupt
source and header files (stm8s_it.h and stm8s_it.c) must be excluded. Sometimes it is better to add
only those files that you will need to complete a project. For example, if your project is just using
GPIOs, it is better to add GPIO files only along with stm8s.h and stm8s_conf.h. However, | recommend
this technique only after you have mastered STM8 coding well because in most cases you will need
multiple hardware which have dependencies on each other. As an example, when using SPI, you’ll
need both GPIO and SPI modules. If you understand these dependencies, it is okay to select files as
per need. You can, then, comment out unnecessary hardware module files specified in the stm8s.h
header file and get a faster compilation and build process. After compilation, you should always
build/rebuild your project by hitting the Build or Rebuild button. This will generate the final s19 output
file in either Debug or Release folder according to the generation mode selected. If things are in order,
there should be no error or warning message.

ST Visual Develop - GPIO st~ [main.c]

9 File Edit View Project Build Debug Debuginstrument Tools Window Help .8 x
e o 3 0o 0ooEy (= Find iy - ol o e | B Ty i =
r)e% ﬂg \:Ee Sge P% o | A B e GoTa q!}.‘!’ ;e%au ik BRI Guah | fook Bk Wk BN | Rih | St | PRl mﬂ: [l = arne'?ws it
| w0 | b e 25200 2 | B i s | B » 5 45 E> i o | o
AP MRS R T T | PR | oo i3 e B REM i Se&llmﬁ Els ot | S ﬁw ﬁ'x t.%n TieHon Tieh

Vorkspace “x
o T Finclude STMESH' n

B 5
=g gpio 3 void main (void)
=42 Source Files 4
main.c 5 booli= 0;
[stmés_gpio.c 2 ulbs=0;
stmd, interrupt vector.c ; ul6 times = 10000;
-G Include Files 9 GPI0_Delnit(GPIOB);
stmbsh 10 GPIO_Delnit(GPIOD);
-] stm3s_confh 11
stmés_ gpioh 12 GPID_Init(GPIOB, GRIO_PIN 7, GPIO_MODE_IN_FL_NO_T);
(3 Btersl Dependencies 13 GPIO_Init(GPIOD, GRIO_PIN_0, GPIO_MODE_OUT_PP_LOW FAST);
14
15 forly)
% 0 |
7 if(GPIO_ReadinputPin(GPIOB, GPIO_PIN_7) == FALSE)
18 O
19 while(GPIO_ReadinputPin{GPIOB, GPIO_PIN_7) == FALSE];
20 insl;
21 }
2
2 switch(j
24 0O {
25 [ﬁ case(: s
B Workspace manc | sntsh | sinds_corin

t|[cvdwarf Debug\gpio.smad P
Running Post-Build step
chex -0 Debug\gpio.s13 Debug\gpio.smé
gpio.elf - 0 error(s), 0 warning|(s)

i v
[T [puild { Tooks } FndnFies 1), FindinFiles 2} Debug } Console
Help, press F1 Ln 16, Col 10 MODIFIED |READ [CAP NUM [SCRL [OVR m Ready

Lastly, | have not found any useful simulation software like Proteus VSM or Electronic Workbench that
support STM8 family. Thus, we have to debug our code in real-life with real hardware. It may sound
difficult but actually it is not so. We can, however, use such software to make models of STM8 micros
and make our PCBs. | don’t like simulations as they are not always accurate and real-world type.

One more advice | would like to give to the readers. Please read the SPL help file. It is located in the
SPL zip file under the name stm8s-a_stdperiph_lib_um.chm. It explains each function, definition, data
structure, all internal hardware modules and how to use them properly. This is a very important
document and your best friend in coding STM8 micros. Apart from this document the reference
manual is equally important as it details the capabilities of all internal hardware. | won’t be detailing
the internal hardware much as these docs will be doing so.

Uploading Code

Codes generated by Cosmic C compiler have s19 file extensions. It is similar to typical hex file format,
containing user code as hex values. Well since we don’t need to modify finally generated output files,
it doesn’t really matter in which format it is. All we will need is to upload them to our target MCUs.
We can do it in two ways — either by using STVP or STVD.

Firstly, let’s check the method with STVP. Run STVP software. For the first time the following window
will appear. From here we have to select ST-Link programmer, SWIM interface and our target chip.

Configuration

Hardware : Part : Device :

RLINK STHBAL3138xx555 ~ oK,
ST7255-EPE STHBAL3146 I—I
ST72589-EPB STHBAL3I148 Cancel
ST7263%—EPE STHBAL3166 Q
ST7277-EPE STHBAL3168

ST727x4-EPB : STHBAL318x

ST7-DVP3 (R e STMBALI1ESx

ST7-ENU3 ITaG STHBAL3L46

ST7MDPO1-EFE SWD STHBALIL4S

ST7MDT10-EFE STHBALILE6

ST7HDT1-LVE STHBAL3LES

ST?MDT1-DVE2 STMBALILGx

ST7MDT1-EFB STHBAL3LES=

ST?7MDT1-EPE2 STHBLOS1x3

ST7MDTI-KIT STHBLOS2Ch

ST7MDT20J-EPE STHELOS2RS

ST?MDT204-EPE STHBL101F1

ST7MDT25-EPE STHBL1D1x2

ST7MDT2-DVP STHBL101x3

ST7MDTZ-DVE2 STHBL151%2

ST7HDT2-EFB STHEL151%3

ST7MDT2—EPE2 STHBL15=C4

ST7HDTZ—KIT STHBL15xCh

ST7MDT4-EFE STHBL15=CH

ST7MDTA-KIT STHBL15xG4

ST7HDTS-EPB STHEL15xGE

ST?MDTG—EPE2 STHBL15xK4

ST7MDT7—EPE2 STHBL15xK6

ST7MDTH1-EFE STHBL15=MS

ST7MDTS1-EFE STHBL15xR6

ST7HDTU2-EPE STHEL15xRS

ST7MDTU3-EFE STHBL162M8

ST7MDTUS-EFE STMBL162RS

ST7UDOS-UD13 STHBS003F3

STICE

STICK

ST-TSLINK

STVP interface looks like any other programmer interface as shown below:

4 no project - STVP

File Edit Project Configure Read Program Verify Erase Blank-Check View Help

He= @ BB «smesoosks ~| 4 CN N AW W
=1 x| 00 00 00 00 00 00 OO 0O OO OO O0 00 00 00 00 0O A
Memory checksum. 0x0 o~ 00 00 00 00 00 00 OO 0O OO OO 00 00 00 00 00 0O
Henory checksun: Uxl " 00 00D 00 00 00 00 00D 00 00 00 00 00 00 00 00 0O
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
OETION BVTE status: 00 00 00 00 D0 00 00 00 00 00 00 00 00 00 00 OO0
Hot programnned 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Option byte 0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Obtion byte 1. 00 00 00 00 00 00 00 00 00 00 00 D0 00 00 00 0O 0O
Option byte 2. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Option byte 3- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Obtion bDyte 4. 00 00 00 00 00 0D 00 0D 0O 00 00 DO 00 00 00 00 DD
Option byte 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Memory checkewn: 0x0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 0D 00 0D 0O 00 00 DO 00 00 00 00 DD
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO 00 00 00 00 00 0O
00 00 00 00 0D 00 0D 0O 00 00 DO 00 00 00 00 DD
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO 00 00 00 00 00 0O
00 00 00 00 0D 00 0D 0O 00 00 DO 00 00 00 00 DD
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO 00 00 00 00 00 0O
00 00 00 00 0D 00 0D 0O 00 00 DO 00 00 00 00 DD
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO 00 00 00 00 00 0O
00 00D 00 00 00 00 00D 00 00 00 00 00 00 00 00 0O
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 00 00 0O
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 OO 0O OO OO OO0 00 00 OO0 00 0O
00 00 00 00 00 00 00 00 00 00 D0 00 00 00 0O 0O
d 0 00 00 00 00O 00 0O 00 00 00 00 00 00 00 00 00 v
< > PROGRAM MEMORY 4 DATA MEMORY A, OPTION BYTE

L=

Hardware configuration set to ¢ST-LINK on USB with ST
Elank check before programming (when awailable) is OFF
Verify after programming is ON

Clear memory before loading a file is ON

Erase device nemory before programning (vhen available) is OFF
Display & popup window vhen an error occurs is ON

Iog activity i=

003K3 plugged in and SWIN protocels

Ready @ <Unknown> ST-LINK STME5003K3 SWIM

Notice the mid tabs at the bottom of the hex values. From here we can see the hex values for program
memory, data/EEPROM memory and configuration settings. The configuration setting bits are
intended for setting some special hardware configurations or extending features of the target as well
as setting memory readout protection.

1 no project - STVP

File Edit Project Configure Read Program Verify Erase Blank-Check View Help

= @ & [sTHESD03K3 <l e ey
SET]
Momory chookoun 0n0 & | Vake: [000000000000
OPTION BYTE status: Hame [Desorption ~
Ho File ROP Fead O Protection OFF 7w
Hot programmed
Option bytes 0: 00 UBC bit? 1]
gD:mn Ev:e % EE UBC kitg a
ption byte 2:
Option byte 3: 0D e a
Option byte 4: 00 iy H
Option byte 5. 00 Dbc e 5
Menory checksun: 0x0 e 3
UBC kit 0
AFRT Reserved
AFFE AFRE hltemate Function Remapping inactive
AFRS AFRS Alemate Function Remapping inactive
AFRd Reserved
AFRZ Reserved
AFA2 Reserved
AFR1 AFR1 Aliemate Function Remapping inactive
AFRD Reserved
HSITRIM 3 bit orvthie iy timming
LSI_EN LS| Clock not available as CPU dlock sourcs
IWDE_HW Independart Watchdag aclivated by Software
WwDE Hw window W atchdon activated by Software o
< >
v
< > PROGRAM MEMORY f, DATA MEMORY , OPTION BYTE

xl[Hardvare configuration sst to <ST-LINK on USE with STM8S003K3 plugged in and SVIN protocol»
Blank check before programming (when available) is OFF
Verify after programning is ON.
Clear memory before loading = file is ON
Frase device memory before programming (vhen available) is OFF
Display a popup window when an error occurs is ON
Tog activity is OFF

Ready @ <Unknown> ST-LINK STMBS003K3 SWIM

Try not to mess with security or protection bit at first or during tests as it will lock your chip up,
rendering it useless. You won’t simply be able to write it again until you unlock it. Unless needed, we
won’t be changing any default configuration bit. One thing to note is the fact that upon new
compilation and build, the newly generated output file is automatically reloaded. The rest of the stuffs
like loading or saving a s19 file, reading, writing and others are as simple as like with other
programmers. | won’t be explaining these steps as | assume that readers of this article already know
how to do all these from their previous experiences with other MCUs.

Now we will explore how we can upload a code to our target using STVD. After compiling and building
a project successfully without any error, the compiler will generate a s19 output file either in Debug
or Release folder depending on which mode of compilation selected. By default, Debug mode is
selected unless the coder changed it and so our desired s19 file will be in this folder. First, we need to
open the programmer interface. We can do that either by clicking the icon as shown below:

@nls Options | =™

or we can go to Tools >> Programmer.

We will get a new window as shown below:

#* Light Programmer

Eh Settings (L) Memory Areas @ OPTION BYTE <@ Program

Target Device
STMES003K3
Hardware
Board: Ports: Programming Mode:
w USB ~ SWiM ~
Frotections: if feasible...

() Erase before Programming
(®) Blank Check befors Program.

[Unlock Device

Run STVP

Cancel Help

As the name of the new window suggests, it is a light-weight programmer interface but good enough
for our purpose. Notice that there are many options and four tabs. Here again we need to select
programmer, programming interface (SWIM) and erase/blank check options. Then we go to the next

tab to select files for EEPROM (if any) and Program (also Flash/Code) memory as shown below. You
can add/remove files just as usually.

#* Light Programmer

F Settings -] Memory Areas £ OPTION BYTE <@ Program

Memony Area:
PROGRAM MEMORY w

Files: [1Program even if has empty file list
File Size Last Modification Date
< >

== =
0K Cancel Help

Next, we set configuration bits if needed from the tab as shown below:

#* Light Programmer

@ Settings @ Memory Areas E# OPTION BYTE G Program

Fields: [Program even ff Default

Name Description ~

ROF Read Out Protection OFF

UBC bit7
LUBC bit&
LUBC bits
LUBC bit4
LUBC bit3
LUBC bit2
IUBC bit1
UBC bitd

[— RN — RN — N — R — N — R — R —]

AFRE AFRE Altemate Function Remapping inactive
AFRE AFRS5 Atemate Function Remapping inactive
AFR1 AFR1 Attemate Function Remapping inactive e

Cancel Help

Finally, we are ready to upload code. Just hit the start button and wait for the process to finish.

+* Light Programmer

b Settngs) Memory Areas [# OPTION BYTE < Program

Summary & Outputs

Device: STME5003K3
Board: ST-LIMK

Port: USB

Programming Mode: SWIM

Tasks:
Blank Check (f feasible)
Program

Verify

QK Cancel Help

Every time a code is programmed, it is verified automatically.

General Purpose Input Output (GPIO)

The very first “Hello World” project that we do with every new embedded device is a simple LED
blinking program. Here we do the same. We will be basically testing both input and output function
by making a variable flash rate blinking LED. Check the schematic of the Disco board. Check the pins
with which the on-board LED and the push button are connected.

Not Fited

Ul
STMESOISK ITEC

Not Figed

Noi Figed YR o
L NRST PO e
"l b OSCTNPAI PCE e
oy OSCOUT/PA2 PCS e
Vss P(“ e
VCAP o - — -
vad PQ e
lcs i e :’" gg

il N PFa PES

Cloo

aavi— 1 s» vop 100mF

|
1
—
SWPUSH-CMS’
81

= USER & WAKE-UP Bution

You can also use the STM8CubeMX in board selector mode for this too.

Shown below is the internal block diagram of GPIO pins:

PBUFFER
ALTERNATE
OUTPUT _/;_'
ALTERNATE I
EMABLE |
- PULL-UP
ouTPUT A
ki ODR REGISTER |
| =
1 |
ki »|DDR REGISTER — |
1 _ } PIN
| N
LI
1N
@ At
2 soFE | A | ™
= CONTROL /
S —{C Rz REGISTER [g aurres | Dones O
4 i I I |
Araing npu

INPUT

A IDR REGISTER
(FRead only)

ALTERNATE FUNCTION
INPUT TO ON-CHIP | |

PERIFHEFAL v
EXTERNAL FROM
INTERRIFT ~F otheR 4
TO INTERRUFT BTS
CONTROLLER

Because each I/0 is independently configurable and have many options associated with it, its block
looks complex at first sight. Check the various options every 1/O possess:

Diodes
Mode DI:Z:LR CDT Cb?lg Function Pull-up | P-buffer
to UDD to VSS
Floating without
0 0 0 interrupt ot
Pull-up without
Input | 0 1 0 interrupt on Off
0 0 1 Floating with interrupt Off
0 1 1 Pull-up with interrupt on on
1 0 0 | Open drain output Off on
1 1 0 | Push-pull output off On
1 0] E]gﬁg drain output, fast off
Qutput
1 1 1 Push-pull, fast mode Off On
) Mot im-
1 ¥ X Tme_we’? drain (on Mot implemented | plemented
specific pins) (1)

1. The diode connectad to Vpg 5 not implemented in true n drain pads. A local protection between the
pad and WV, is implen‘en%d to protect the device against positive streas.

Shown below are the SPL functions associated with the GPIO module.

GPIO_Public_Functions

STM8S StdPeriph Driver

Functions

void GPIO Delnit (GPIO TypeDef *GPIOx)
Deinitializes the GPIOx peripheral registers to their default reset values.

void GPIO ExternalPullUpConfig (GPIO TypeDef *GPIOx, GPIO Pin TypeDef GPIO_Pin, FunctionalState NewState)
Configures the external pull-up on GPIOx pins.

void GPIO Init (GPIQ TypeDef *GPIOx, GPIO Pin TypeDef GPIO_Pin, GPIO Mode TypeDef GPIO_Mode)
Initializes the GPIOx according to the specified parameters.

uint® t GPIO ReadIinputData (GPIO TypeDef *GPI0OX)
Reads the specified GPIO input data port.
BitStatus GPIQ ReadInputPin (GPIQ TypeDef *GPIOx, GPIO Pin TypeDef GPIO_Pin)
Reads the specified GPIO input data pin.
uint® t GPI0 ReadOutputData (GPI0 TypeDef *GPIOx)

Reads the specified GPIO output data port.

void GPIO Write (GPIO TypeDef *GPIOx, uintd t PortVal)
Writes data to the specified GPIO data port.

void GPIO WriteHigh (GPIO TypeDef *GPIOx, GPIO Pin TvpeDef PortPins)
Writes high level to the specified GPIO pins.

void GPIO Writelow (GPIO TypeDef *GPIOx, GPIO Pin TypeDef PortPins)
Writes low level to the specified GPIO pins.

void GPIO WriteReverse (GPIO TypeDef *GPIOx, GPIO Pin TypeDef PortPins)
Writes reverse level to the specified GPIO pins.

Observe the code below. This is the power of the ST’s SPL. The code is written with no traditional
register access. Everything here has a meaningful nomenclature, just like regular naming/words of the
reference manual/comments. There shouldn’t be any issue understanding the code. The code is
almost Arduino-like. Here we are polling an input pin’s state to alter the blink rate of a LED.

Hardware Connection

T_LINK_SWIM

D1 [Green Led]

RCC_OSCIN [Zs
RCC_OSCOUT [k

S7]

ETMEIOIEITEC

LFArIz

[U01INg SWI-HSNd-MS] T8

Code Example

#include "STM8S.h"

void main (void)
bool i = 0;

GPIO_Delnit(GPIOB);
GPIO_Delnit(GPIOD);

GPIO_Init(GPIOB, GPIO_PIN_7, GPIO_MODE_IN_FL_NO_IT);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_PP_LOW_FAST);

for(;;)
{
if(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE)

while(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE);

i*=1;

}
switch(i)
{
case 0:
delay_ms(1000);
break;
}
case 1:
delay_ms(200);
break;
}
}
GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
}
}
Explanation

The following lines deinitialize the GPIOs we used. Every time you reconfigure or setup a hardware
peripheral for the first time you must deinitialize it before using it. Though it is not mandatory, it will
remove any chance of wrong/conflicting configurations.

GPIO_Delnit(GPIOB);
GPIO_Delnit(GPIOD);

After deinitialization, we are good to go for initializing or setting up the GPIOs. Inputs can be with or
without internal pull-up resistors. Outputs can be either push-pull totem-pole or open drain types.
Each pin can be individually configured and does not have any dependency on another. The following
codes set GPIO PB7 as a floating input with no interrupt capability and GPIO PDO as a fast push-pull
output. PB7 is set up as a floating input rather than an internally pulled-up input because the button
on the Disco board is already pulled up externally.

GPIO_Init(GPIOB, GPIO_PIN_7, GPIO_MODE_IN_FL_NO_IT);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_PP_LOW_FAST);

The remaining part of the code in the main loop is just polling the button’s state and altering the delay
time for toggling the LED if the button is pressed.

for(;;)
{
if(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE)
while(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE);

i*=1;

}
switch(i)
case 0:

delay_ms(1000);
break;

(GPIOD, GPIO_PIN_0);

delay_ms(200);
break;

case 1:
}
GPIO_WriteReverse

}

Demo

(00008
| CCOOQ
00000
< COOOO
00000
* 00000~
3 OCOOO
_100000:;

Rrlvpfozed4w

Video link: https://www.youtube.com/watch?v

https://www.youtube.com/watch?v=Rr1vpfoze4w

Clock System (CLK)

The internal network of STM8 clock system allows us to tune up operating speeds of peripherals and
CPU according to our needs. Software delays and power consumption depend on how the clock
system is set.

In STM8 micros, there are three main clock sources — High Speed Internal Clock (HSI), High Speed
External Clock (HSE) and Low Speed Internal Clock (LSI). The HSI has an oscillating frequency of 16MHz
and is an internal RC oscillator with good precision —about 1% tolerant over a wide temperature range.
HSE can be an external clock circuitry, temperature-compensated crystal oscillator (TCXO) or ordinary
crystal resonator. It accepts all frequencies from 1MHz to 24MHz. Lastly, LSI clock is also an
independent internal RC oscillator-based clock source that is mainly intended for idle or low power
operating modes and the independent watchdog timer (IWDG). It has a fixed factory calibrated
operating frequency of 128kHz and is not as accurate as HSI or HSE. There are also clock
dividers/prescalers at various points to scale clocks as per requirement. Mainly two prescalers are
what we need — the HSI prescaler and the CPU divider. Peripherals are directly feed by the main clock
source. Additionally, there is a clock output pin (CCO) that outputs a given clock frequency. It can be
used to clock another micro, generate clock for other devices like logic ICs. It can also be used as a free
oscillator or perform clock performance tests. There’s fail-safe clock security that makes HSI backup
of HSE. Should HSE fail, HSI takes over automatically. Check the internal block diagram below:

CHMT-O]
HEE Ext
. CPUDNE:O)
" Tz . "
OBCIN I
HIE 050]' ,
1-24MHz A
CEECOUT EXTCLK OFT BIT AN
i
Master | ThazTER | /B feru
Clodk Mg
M CEE T — 4 HEIDND Swiich Az
| { [T
_ + B rzg,
HEIRT =g 2 | o
18 MHz = /' To CPU and
')I{" ¢ window watchdog
LEI_EN OFTBIT
'-. fis -
- &
o Timers
ris)
To Independent watchdog ™, &Pl
. Ferphenl dock | ™ ADC
*, Enabie (B bRt AU
N AN
PREC{10) OFT BITS }—, usaT
j — {' To Ao wakeup it (AR
CHMNUSEL OFTBIT
CCOEEL[O
I': 13
/' —Tuzann
P
s
Configurable chock sutput | — TassTER
= ™ e
+ P
Er‘ — Topu@
— eyt
— T
— Top 16
 Tepu32
N Topu'B4

Master Clock Mux
Input fraquency
HSE LEIS
1-16 MHz HSIDIV MASTERGLK _——— CPUCLK 16 MHz max
> ® L B —H 0.5 Ta CPU (MHZ)
151
gl®)
, T > 2 To I2C (MHz)
. - To SPI (MHz)
LSI
= = Jremscuem L[. |roascmn
AWU clock Mux
—» To Timers [MHz)
151 \@
Prescaler opt bit 1 To UART/USART /LINUART (MHz)
HSE 128 KHz
f187.5 ~ J Ta AWU ragister clock (MHz)
L~
To AWU counter clack (KHZ)
‘CCO source Mux
o
O MASTERCLK
O HSI
HSIDIV
O -
{MHz) CCO)«—ILI-d— hee
- . HE
O LS
l———— =
@ I CPUCLK
%
Hardware Connection
RCC_OSCIM
RCC_OSCOoOUT

kys

ETMESOIRCITEC

LOFPIY

[Wo313INg SlWo-HSNd-MS] T4

Code Example

The code example below demonstrates how to run the CPU at 2MHz clock using HSI and extract
500kHz clock output from CCO pin using CCO output selection. HSE is divided by 8, i.e. 16MHz divided
by 8 equals 2MHz. This 2MHz is the master clock source and further divided four times to get 500kHz.

Note CCO pin is only available in some pins. For example, in STM8S003K3 this pin is either PDO pin or
PC4. We will need to override the default function of PDO pin to favour for CCO output. To do so, we
will need to change Alternate Function (AFR5) configuration bit during code upload.

#include "STM8S.h"

#define LED_pin GPIO_PIN_0
#define LED_port GPIOD
void setup(void);

void clock_setup(void);
void GPIO_setup(void);

void main(void)

setup();
GPIO_WriteLow(LED_port, LED_pin);

while(TRUE)

{
P

void setup(void)

clock_setup();
GPIO_setup();

void clock_setup(void)
CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV4);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HS,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

CLK_CCOConfig(CLK_OUTPUT_CPU);
CLK_CCOCmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_CCORDY) == FALSE);

void GPIO_setup(void)

GPIO_Delnit(LED_port);
GPIO_init(LED_port, LED_pin, GPIO_MODE_OUT_OD_HIZ_FAST);

Explanation

The full explanation of this code is given in the last segment of this article. The only thing I'll describe
here is this part:

CLK_CCOConfig(CLK_OUTPUT_CPU);
CLK_CCOCmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_CCORDY) == FALSE);

These lines select the clock source that the CCO pin will output, enable the CCO module and wait for
it to stabilize. Here | selected the CCO to output CPU clock.

Demo

Start

¥ Analyzers

O= Capture

Video link: https://www.youtube.com/watch?v=leLUc s3jBE

https://www.youtube.com/watch?v=IeLUc_s3jBE

External Interrupt (EXTI)

External interrupt is an additional feature of GPIOs in input mode. It makes a micro to respond
instantly to changes done on it GPIO input pin(s) by an external events/triggers, skipping other tasks.
External interrupts are useful in many scenarios. For instance, an emergency button. Consider the case
of a treadmill. You are running at a speed and suddenly you get an ache in one of your ankles. You'll
surely want to stop running immediately. Rather decreasing speed in small steps, you can hit the
emergency button to quickly stop the treadmill. The emergency button will interrupt all other
processes and immediately instruct the treadmill’s CPU to decrease speed faster than otherwise
possible. Thus, it has high priority over other processes.

In most 8-bit micros, there are few external interrupt pins and very limited options are available for
them but that’s not the case with STM’s micros. In STM8s, almost all GPIO pins have independent
external interrupt capability with input Schmitt triggers. Additionally, there’s interrupt controller to
set interrupt priority.

F-BUFFER

ALTERMATE »
QUTPUT . F— — mn— —
ALTERMATE ° | Voo

ENABLE - |

|
|
FULL-UP

A

OuUTPUT

0OR REGISTER| L5 ! — {f |
= o — > i[? | _j/[/ f |
- o : |

—_ED— |

K| DDR REGISTER

T FIN
NI
| [\,
@ L \
8 SLOPE | / |
= CONTROL 1
I e — PROTECTION
Sktlcre REGISTER >_>|H4aur FER DIDDES
b~ L — — 4 — — 1
Amaing nput

Schmdl L'] | OniOE
INPUT e

C: |DR REGISTER
{Fead oniy)

| #

ALTERNATE FUNCTION
INFUT TO ON-CHIP I i

PERIFHERAL '\\ _/n'
EXTERNAL C W&_
INTERRUPT o omier
TO INTERRUPT Ars
CONTROLLER

Hardware Connection

T_LIMK _SWIM
D1 [Green Led]

[Uo3Ing SWo-HSNd-As] 18

Code Example

We will do the same variable flash rate LED blinking example as in the GPIO example but this time with
the DISCO board’s button in external interrupt mode. The code here needs special attention as now
we will see how interrupts are configured and coded. This code is way different than anything | saw
before. I'm saying so because you’ll need to follow certain steps unlike other compilers. In other
compilers, all we do is create the interrupt function and tell the compiler the interrupt vector address.
Same here too but too many steps involved.

Now check the interrupt vector table of STM8S003 below:

no. | block Description Raltmods | Active-natt mode | Vector address
- RESET [Reset Yes Yes 0x00 8000
- TRAP Software interrupt - - 0x00 8004
0 TLI External top level interrupt - - 0x00 8008
1 AW Auto wake up from halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTIO |Port A external interrupts Yes!! vest! 0x00 8014
4 EXTIM Port B extemal interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 Port E extemal interrupts Yes Yes 0x00 8024
8 - Reserved 0x00 8028
9 - Reserved 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
” TIMi tTnlgn;dgL IE,l!rg;jeaatl?’c>\.rerﬁow;’unt:hi*rﬁr:)*.'.u’)) 0x00 8034
12 TIM1 TIM1 capture/compare - - 0x00 8038
13 Mz TIM2 update /overflow - - 0x00 803C
14 Timz TIM2 capture/compare - - 0x00 8040
15 - Reserved 0x00 8044
16 - Reserved 0x00 8048
17 UART1 Tx complete - - 0x00 804C
18 UART1 Receive register DATA FULL - - 0x00 8050
19 12c 12C interrupt Yes Yes 0x00 8054
20 - Reserved 0x00 8058
21 - Reserved 0x00 805C
2| apci |A%C] di’;dig{ef%‘p"te rsion/analog - - 0X00 8060
23 TiM4 TIM4 update/overflow - - 0x00 8064
24 Flash EOPMWR_PG_DIS - - 0x00 8068
meseved ek

1. Except PA1

You'll find this table not in the reference manual but in the device’s datasheet. This table varies with
devices and so be sure of correct datasheet. The DISCO board’s button is connected to PB7 and so
clearly, we will need IRQ4, i.e. EXTI1 or PORTB external interrupts. All external interrupts on GPIOB
pin are masked in this vector address.

Please note that codes that use peripheral interrupts need stm8s_it.h and stm8s_it.c files. Therefore,
add them if you are to use interrupts.

main.c

#include "stm8s.h"

bool state = FALSE;

void GPIO_setup(void);
void EXTI_setup(void);
void clock_setup(void);

void main(void)

{
GPIO_setup();
EXTI_setup();
clock_setup();

do
{
GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
if(state == TRUE)
delay_ms(100);
else
delay_ms(1000);
/
Jwhile (TRUE);

void GPIO_setup(void)

{
GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_7, GPIO_MODE_IN_PU_IT);
GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_PP_LOW_FAST);
}

void EXTI_setup(void)
{

ITC_Delnit();
ITC_SetSoftwarePriority(ITC_IRQ_PORTB, ITC_PRIORITYLEVEL_0);

EXTI_Delnit();
EXTI_SetExtIntSensitivity(EXTI_PORT_GPIOB, EXTI_SENSITIVITY_FALL_ONLY);
EXTI_SetTLISensitivity(EXTI_TLISENSITIVITY_FALL_ONLY);

enablelnterrupts();

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,

DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

stm8 interrupt vector.c

/* BASIC INTERRUPT VECTOR TABLE FOR STM8 devices
* Copyright (c) 2007 STMicroelectronics
¥

#include "stm8s_it.h"

typedef void @far (*interrupt_handler_t)(void);

struct interrupt_vector {
unsigned char interrupt_instruction;
interrupt_handler_t interrupt_handler;

b
//@far @interrupt void NonHandledInterrupt (void)
Vi
/*in order to detect unexpected events during development,
it is recommended to set a breakpoint on the following instruction
7/
// return;
/0

extern void _stext(); /* startup routine */

struct interrupt_vector const _vectab[] = {

{0x82, (interrupt_handler_t)_stext}, /* reset */
{0x82, NonHandledInterrupt}, /* trap */
{0x82, NonHandledInterrupt}, /* irq0 */
{0x82, NonHandledInterrupt}, /* irq1 */
{0x82, NonHandledInterrupt}, /* irq2 */
{0x82, NonHandledInterrupt}, /* irqg3 */
{0x82, (interrupt_handler)EXTI1_IRQHandler}, /*irq4 */
{0x82, NonHandledInterrupt}, /* irg */
{0x82, NonHandledInterrupt}, /* irq6 */
{0x82, NonHandledInterrupt}, /* irq7 */
{0x82, NonHandledInterrupt}, /* irq8 */
{0x82, NonHandledInterrupt}, /* irq9 */
{0x82, NonHandledInterrupt}, /* irg10 */
{0x82, NonHandledInterrupt}, /* irg11 %/
{0x82, NonHandledInterrupt}, /* irq12 */
{0x82, NonHandledInterrupt}, /* irg13 */
{0x82, NonHandledInterrupt}, /* irqg14 */
{0x82, NonHandledInterrupt}, /* irg15 */
{0x82, NonHandledlInterrupt}, /* irg16 */
{0x82, NonHandledInterrupt}, /* irg17 */

{0x82, NonHandledInterrupt}, /* irq18 */
{0x82, NonHandledInterrupt}, /* irq19 */
{0x82, NonHandledInterrupt}, /* irq20 */
{0x82, NonHandledInterrupt}, /* irq21 */
{0x82, NonHandledInterrupt}, /* irq22 */
{0x82, NonHandledInterrupt}, /* irq23 */
{0x82, NonHandledInterrupt}, /* irq24 */
{0x82, NonHandledInterrupt}, /* irq25 */
{0x82, NonHandledInterrupt}, /* irq26 */
{0x82, NonHandledInterrupt}, /* irq27 */
{0x82, NonHandledInterrupt}, /* irq28 */
{0x82, NonHandledInterrupt}, /* irq29 */

Now check the top parts of the stm8s_it.h and stm8s_it.c files respectively.

stm8s _it.h

27

29 #lfndef _ STMBS_IT_ H
30 #define __STMBS_IT_H
N
32
33
34 - :
35 #include “stmiz.h"
36
£ * Exp
38 *E
39
AD * Expor :

41 BE#Fifdef CDSMI{:

42 void _stext(void); / RESET startup routine *
43 IMTERRUPT weid MenHandledInterrupt(veoid);
44 #endif /~_COSMIC_ 7

stm8s _it.c
30 * INCIUDES === mm e m e e
3 #include "stmis.h"
32 #include "stmisz_it.h"

extern bool state;

void EXTI_IRCQHandler{woid)

|
I state “=7;
h

These must be coded.

Explanation

Most part of the code is same as previous codes and so | won’t be going through them again. However,
there’s something new:

void EXTI_setup(void)

ITC_Delnit();
ITC_SetSoftwarePriority(ITC_IRQ_PORTB, ITC_PRIORITYLEVEL_0);

EXTI_Delnit();
EXTI_SetExtintSensitivity(EXTI_PORT_GPIOB, EXTI_SENSITIVITY_FALL_ONLY);
EXTI_SetTLISensitivity(EXTI_TLISENSITIVITY_FALL_ONLY);

enablelnterrupts();

}

This function is where we are setting up the external interrupt. The first two lines deinitiate the
interrupt controller and set priority while initiating it. It is not mandatory unless you want to set
interrupt priority. Then we configure the external interrupt on PORTB pins. We also set the edge that
will invoke an interrupt. Finally, we enable global interrupt. There goes the main.c file

Now it’s time to explain the stm8_interrupt_vector.c file. The top part of this file must include this
line #include "stm8s_it.h". It must also have the following section commented out:

//@far @interrupt void NonHandledInterrupt (void)

N
/*in order to detect unexpected events during development,
it is recommended to set a breakpoint on the following instruction
¥/
// return;
1

We need to let our compiler know the name of the function that it should call when a particular
interrupt is triggered. There are two parts for that. Firstly, the interrupt vector address and secondly
the name of the function. This is reason for this line:

{0x82, (interrupt_handler_t)EXTI1_IRQHandler}, /*irg4 */

Lastly, the stm8s_it.h and stm8s_it.c files contain the prototype and the function that will execute the
interrupt service routine (ISR). In our case, the ISR will change the logic state of the Boolean variable
state. This will alter that flashing rate in the main loop.

Demo

Video link: https://www.youtube.com/watch?v=P6gdmWgH-Ls

https://www.youtube.com/watch?v=P6qdmWgH-Ls

Beeper (BEEP)

The beeper hardware is a sound generation unit. This is a hardware not found in other micros and is
useful in scenarios where we need an audible output. An alarm is a good example. The beeper unit
uses LS| to generate 1kHz, 2kHz and 4kHz square wave outputs that can be directly feed to a small
piezo tweeter (not buzzer). In most STM8 micros, the beeper module’s 1/0 pin (PD4) is not accessible
unless alternate function configuration bit is altered during code upload. However, there are few
exceptional chips like the STM8S003 in which we don’t need to change any configuration bit at all. The
beeper module has dependencies with the Auto-Wake-Up (AWU) module.

Hardware Connection

=
=
i
=
=
—

RCC_OSCIN
RCC_CSCOUT

o
=
—
u
=
e
-
]
+
0
=
if
o
=
o
3
| B—

Code Example

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void beeper_setup(void);

void main(void)

clock_setup();
GPIO_setup();
beeper_setup();

while(TRUE)

GPIO_WriteLow(GPIOD, GPIO_PIN_0);
BEEP_Cmd(ENABLE);
delay_ms(200);

GPIO_WriteHigh(GPIOD, GPIO_PIN_0);
BEEP_Cmd(DISABLE);
delay_ms(200);

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECM(DISABLE);

CLK_LSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_LSIRDY) == FALSE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

GPIO_Delnit(GPIOD);

GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_OD_LOW_FAST);

GPIO_Init(GPIOD, GPIO_PIN_4, GPIO_MODE_OUT_PP_HIGH_FAST);
}

void beeper_setup(void)

BEEP_Delnit();
BEEP_L SICalibrationConfig(128000);
BEEP_Init(BEEP_FREQUENCY _2KHZ);

}

Explanation

As stated earlier beeper module is dependent on the AWU module and so we need to enable this
module’s peripheral clock:

CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, ENABLE);
We need to set the beeper port pin as an output pin:

GPIO_Init(GPIOD, GPIO_PIN_4, GPIO_MODE_OUT_PP_HIGH_FAST);

Configuring the beeper is straight. Just like other peripherals, we deinitialize it first and set both LSI
and beep frequency. Optionally we can calibrate the LSI.

void beeper_setup(void)

BEEP_Delnit();

BEEP_L SiCalibrationConfig(128000);

BEEP_Init(BEEP_FREQUENCY_2KHZ);
}

To activate/deactivate the beeper we need to use the following instructions:
BEEP_Cmd(ENABLE);

BEEP_Cmd(DISABLE);

Demo

T2 MRS b T
AT T T L
= = =

Video link: https://www.youtube.com/watch?v=LDPtULsJao8

https://www.youtube.com/watch?v=LDPtULsJao8

Alphanumerical LCD

Alphanumerical displays are the most common and basic form of displays after seven segments and
LED displays. They are useful for projecting multiple data quickly in ways that are otherwise difficult
with other kinds of displays.

To interface a LCD with a STM8 micro, we need LCD library. The STM8 SPL does not have a library for
such displays and we need to code it on our own. Interfacing a LCDs are not difficult tasks as no special
hardware is required to drive LCDs other than GPIOs. However, there are some tasks needed in the
software end. We need to include the library files. The process of library inclusion is discussed in the
later part of this article as it needs some special attentions. The example I’'m sharing here uses 6 GPIO
pins from GPIOC. The read-write (R/W) pin of the LCD is connected to ground. The layout is as shown
below.

Hardware Connection

LIME_SWWIM

RCC_OSCIN
RCC_OsCoOUT

STMEE0MITEC
LgFP32

[Uorng SWo-HSNd-AS] T4

Code Example

led.h

#include "stm8s.h"

#define LCD_PORT GPIOD
#define LCD_RS GPIO_PIN_2
#define LCD_EN GPIO_PIN_3
#define LCD_DB4 GPIO_PIN_4
#define LCD_DBS GPIO_PIN_5
#define LCD_DB6 GPIO_PIN_6
#define LCD_DB7 GPIO_PIN_7
#define clear_display 0x01

#define goto_home 0x02

#define cursor_direction_inc (0x04 | 0x02)
#define cursor_direction_dec (0x04 | 0x00)
#define display_shift (0x04 | 0x01)
#define display_no_shift (0x04 | 0x00)
#define display_on (0x08 | 0x04)
#define display_off (0x08 | 0x02)
#define cursor_on (0x08 | 0x02)
#define cursor_off (0x08 | 0x00)
#define blink_on (0x08 | 0x01)
#define blink_off (0x08 | 0x00)
#define _8_pin_interface (0x20 | 0x10)
#define _4_pin_interface (0x20 | 0x00)
#define _2_row_display (0x20 | 0x08)
#define _1_row_display (0x20 | 0x00)
#define _5x10_dots (0x20 | 0x40)
#define _5x7_dots (0x20 | 0x00)
#define DAT 1

#define CMD 0

void LCD_GPIO_init(void);

void LCD_init(void);

void LCD_send(unsigned char value, unsigned char mode);

void LCD_4bit_send(unsigned char lcd_data);

void LCD_putstr(char *lcd_string);

void LCD_putchar(char char_data);

void LCD_clear_home(void);

void LCD_goto(unsigned char x_pos, unsigned char y_pos);

void toggle_EN_pin(void);

void toggle_io(unsigned char Icd_data, unsigned char bit_pos, unsigned char pin_num);

Icd.c

#include "lcd.h"

void LCD_GPIO_init(void)

{
GPIO_Init(LCD_PORT, LCD_RS, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_EN, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DB4, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DB5, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DB6, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DB7, GPIO_MODE_OUT_PP_HIGH_FAST);
delay_ms(10);

void LCD_init(void)
{

LCD_GPIO_init();
toggle_EN_pin();

GPIO_WriteLow(LCD_PORT, LCD_RS);
GPIO_WriteLow(LCD_PORT, LCD_DB7);
GPIO_WriteLow(LCD_PORT, LCD_DB6);
GPIO_WriteHigh(LCD_PORT, LCD_DBS5);
GPIO_WriteHigh(LCD_PORT, LCD_DB4);
toggle_EN_pin();

GPIO_WriteLow(LCD_PORT, LCD_DB?7);
GPIO_WriteLow(LCD_PORT, LCD_DB6);
GPIO_WriteHigh(LCD_PORT, LCD_DBS5);
GPIO_WriteHigh(LCD_PORT, LCD_DB4);
toggle_EN_pin();

GPIO_WriteLow(LCD_PORT, LCD_DB7);
GPIO_WriteLow(LCD_PORT, LCD_DB6);
GPIO_WriteHigh(LCD_PORT, LCD_DBS5);
GPIO_WriteHigh(LCD_PORT, LCD_DB4);
toggle_EN_pin();

GPIO_WriteLow(LCD_PORT, LCD_DB7);
GPIO_WriteLow(LCD_PORT, LCD_DB6);
GPIO_WriteHigh(LCD_PORT, LCD_DBb);
GPIO_WriteLow(LCD_PORT, LCD_DB4);
toggle_EN_pin();

LCD_send((_4_pin_interface | _2_row_display | _5x7_dots), CMD);
LCD_send((display_on | cursor_off | blink_off), CMD);

LCD_send(clear _display, CMD);
LCD_send((cursor_direction_inc | display_no_shift), CMD);

void LCD_send(unsigned char value, unsigned char mode)
switch(mode)
case DAT:

GPIO_WriteHigh(LCD_PORT, LCD_RS);
break;

}
case CMD:

GPIO_WriteLow(LCD_PORT, LCD_RS);

break;

/
}

LCD_4bit_send(value);
}

void LCD_4bit_send(unsigned char lcd_data)

{

toggle_io(lcd_data, 7, LCD_DB7);
toggle_io(lcd_data, 6, LCD_DB6);
toggle_io(lcd_data, 5, LCD_DBS);
toggle_io(lcd_data, 4, LCD_DB4);
toggle_EN_pin();

toggle_io(lcd_data, 3, LCD_DB7);
toggle_io(lcd_data, 2, LCD_DB6);
toggle_io(lcd_data, 1, LCD_DBS);
toggle_io(lcd_data, 0, LCD_DB4);
toggle_EN_pin();

void LCD_putstr(char *lcd_string)
do

LCD_send(*lcd_string++, DAT);
Jwhile(*lcd_string = "07);

void LCD_putchar(char char_data)
{

LCD_send(char_data, DAT);
/

void LCD_clear_home(void)

LCD_send(clear _display, CMD);
LCD_send(goto_home, CMD);
}

void LCD_goto(unsigned char x_pos, unsigned char y_pos)
ifly_pos == 0)
LCD_send((0x80 | x_pos), CMD);
else

LCD_send((0x80 | 0x40 | x_pos), CMD);
/
/

void toggle_EN_pin(void)

{
GPIO_WriteHigh(LCD_PORT, LCD_EN);
delay_ms(2);

GPIO_WriteLow(LCD_PORT,LCD_EN);
i

void toggle_io(unsigned char Icd_data, unsigned char bit_pos, unsigned char pin_num)

bool temp = FALSE;
temp = (0x01 & (Icd_data >> bit_pos));
switch(temp)

case TRUE:

GPIO_WriteHigh(LCD_PORT, pin_num);
break;

}
default:

GPIO_WriteLow(LCD_PORT, pin_num);
break;
}
}
}

main.c

#include "STM8S.h"
#include "lcd.h"

void clock_setup(void);
void GPIO_setup(void);

void main(void)

const char txt1[] = {'MICROARENA"};
const char txt2[] = {"SShahryiar'};
const char txt3[] = {"STM8S003K"};
const char txtd[] = {"Discovery"};

unsigned char s = 0x00;

clock_setup();
GPIO_setup();

LCD_init();
LCD_clear_home();

LCD_goto(3, 0);
LCD_putstr(txt1);
LCD_goto(3, 1);
LCD_putstr(txt2);
delay_ms(4000);

LCD_clear_home();

for(s = 0; $< 9; s++)
LCD_goto((3 +), 0);
LCD_putchar(txt3[s]);
delay_ms(90);

for(s=0; < 9; s+4)

LCD_goto((3 +), 1);
LCD_putchar(txt4[s]);

delay_ms(90);
}

while (TRUE);
}

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

GPIO_Delnit(LCD_PORT);
i

Explanation

There’s little to explain this code as it involves GPIOs only. The codes for the LCD are coded using all
available info on its datasheet, just initialization and working principle. One thing to note, however, is
the CPU clock speed. If the CPU clock is too fast, LCDs may not work. This is because most LCDs have
a maximum working frequency of 250kHz. It is best to keep this frequency below 200kHz.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

| e e
v Wil %‘ N—T \H\:-m_\\!
4 W e W
>lm i

oms'Mﬁ:“ﬁ

‘ : W=

|7> l.\"- at y\. dacl W
. E;VE?‘NE W=
n.\ = W= Whe—-\

Wt

R

g AR

AT T
- =
| S
(Il
AT

OO0
OO
Ul =

D000 00—
M e ele oo e —
00000

ole o 00 o

OO OO0

o [T

¥

00000000
QO000000 ses i
00000000 3 e

31

800484
00006

g@“:mL_

- -ﬁf@” A LgraL
e e '\uy—r‘q\'\;‘ W=
* . .‘*‘\L

YT A |n‘ ',‘"'w\"»” !

ik
ﬂr‘ s (e W W
- e WY

|

e = "l\'i‘: W=

Q000800 ¢
000000
0000000(
00000000 ¢
0000000

O

;mﬁ el

Video link: https://www.youtube.com/watch?v=TJg2Tuu4QaQ

https://www.youtube.com/watch?v=TJg2Tuu4QaQ

Analog-to-Digital Converter (ADC)

ADC is a very important peripheral in any modern-day microcontroller. It is used to read analogue
outputs from sensors, sense voltage levels and so on. For example, we can use an ADC to read a LM35
temperature sensor. The voltage output from the sensor is proportional to temperature and so we
can use the voltage info to back-calculate temperature. STM8S003K3 has four ADC channels
associated with one ADC block. Other STM8 micros have more ADC channels and ADC blocks. The ADC
of STM8 micros is just as same as the ADCs of other micros. There are a few additional features. Shown
below is the block diagram of the STM8’s ADC peripheral:

i0 I ™, Analog Waichiog E-werl= ﬁ'_ EOCIE _‘i—\|
) \
T B AWD) AWDIE —
— Ena of Gonversion |y Masks [ADC Intemmupt to ITC

'd]:-MWEN Enaole bits {10 channels] AMALOG

% [—HAWE status bits (10 chamnels) | WATCHDOG
) [High Threshaid (10-bits) |

[Low Tnreshold (10-6s) |

—l\" DATA BUFFER

| 1010 bits) or (8% 10 bits)
oy —
SSA DATA REGISTER
{1 x 10-bits) |
ANALOG :
MUX
g
_\ E
AND —» i: L5 §
ANALOGTODISTAL [fapel Prescaer .
— + MASTER
ANT —~] CONVERTER p.aM ol

ANG - — cric 1/ I
Port=s ! ADCM Start conversion {software)

AINTZ —
CONT Zingleicontinuaus mode
ADC ETR n SPZEL Channel select
- LIS SCAN Sean made T

DEUF Buffered moge

>/
Internal TRGO tigger from TIM1

A few things must be noted before using the ADC. These enhance performance significantly:

e Input impedance should be less than 10kQ.

e Itis better to keep ADC clock within or less than 4MHz.

e Schmitt triggers must be disabled.

e Opamp-based input buffer and filter circuits are preferred if possible.

o Ifthe ADC has reference source pins, they should be connected to a precision reference source
like LM336. It is recommended to use a good LDO regulator chip otherwise.

e Unused ADC pins should not be configured or disabled. This will reduce power consumption.

e Rather taking single samples, ADC readings should be sampled at fixed regular intervals and
averaged to get rid of minute fluctuations in readings.

e Right-justified data alignment should be used as it is most convenient to use.

e PCB/wire tracks leading to ADC channels must be short to reduce interference effects.

Hardware Connection

Code Example

#include "STM8S.h"

void clock_setup(void);

void GPIO_setup(void);
void ADC1_setup(void);
void led_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

void main()

unsigned int A0 = 0x0000;

clock_setup();
GPIO_setup();
ADC1_setup();

| 01 [Green Led]

[uolng SiND-HSNd-AS] T4

ETMEIOIRTEC

LoEr

Bojeuy™ 014

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("STM8 ADC");
LCD_goto(0, 1);
LCD_putstr("A0");

while(TRUE)

ADC1_StartConversion();
while(ADC1_GetFlagStatus(ADC1_FLAG_EQC) == FALSE);

A0 = ADC1_GetConversionValue();
ADC1_ClearFlag(ADC1_FLAG_EOC);

led_print(4, 1, AO);
delay_ms(90);

void clock_setup(void)
CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(DISABLE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV2);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV4);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER?2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERA4, DISABLE);

void GPIO_setup(void)
{

GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_0, GPIO_MODE_IN_FL_NO_IT);

GPIO_Delnit(GPIOC);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_3, GPIO_MODE_IN_PU_NO_IT);

void ADC1_setup(void)
ADC1_Delnit();

ADC1_Init(ADC1_CONVERSIONMODE_CONTINUQOUS,
ADC1_CHANNEL_O0,

ADC1_PRESSEL_FCPU_D18,
ADC1_EXTTRIG_GPIO,

DISABLE,

ADC1_ALIGN_RIGHT,
ADC1_SCHMITTTRIG_CHANNELO,
DISABLE);

ADC1_Cmd(ENABLE);

void led_print(unsigned char x_pos, unsigned char y_pos, unsigned int value)
char chr = 0x00;

chr= ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr=(((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

chr=(((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 3), y_pos);
LCD_putchar(chr);

Explanation

First, we need to enable the peripheral clock of the ADC module:
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);

Secondly, we have to set out ADC pin as a floating GPIO with no interrupt capability:

GPIO_Init(GPIOB, GPIO_PIN_0, GPIO_MODE_IN_FL_NO_IT);

ADC setup needs a few info regarding the desired ADC channel:

void ADC1_setup(void)

{
ADC1_Delnit();

ADC1_Init(ADC1_CONVERSIONMODE_CONTINUOUS,
ADC1_CHANNEL_O,
ADC1_PRESSEL_FCPU_D18,
ADC1_EXTTRIG_GPIO,
DISABLE,
ADC1_ALIGN_RIGHT,
ADC1_SCHMITTTRIG_CHANNELO,
DISABLE);

ADC1_Cmd(ENABLE);

The second line of the above function states that we are going to use ADC channel 0 (PBO) with no
Schmitt trigger. We are also not going to use external triggers from timer/GPIO modules. Since the
master clock is running at 8MHz, the ADC prescaler divides the master/peripheral clock to get a
sampling frequency of 444kHz. We are also going to use continuous conversion mode because we
want to continually read the ADC input and don’t want to measure it in certain intervals. Lastly right-
justified data alignment is used as it is easy to read from such.

In the main loop, we need to start ADC conversion and wait for the conversion to complete. We are
not using interrupt methods and so we need to poll if ADC conversion has completed. At the end of
conversion, we can read the ADC and clear ADC End of Conversion (EOC) flag.

ADC1_StartConversion();
while(ADC1_GetFlagStatus(ADC1_FLAG_EQC) == FALSE);

A0 = ADC1_GetConversionValue();
ADC1_ClearFlag(ADC1_FLAG_EOC);

The rest of the code is about printing the ADC data on a LCD.

Video link: https://www.youtube.com/watch?v=rx68zPDEZUU

https://www.youtube.com/watch?v=rx68zPDEZUU

Analog Watchdog (AWD)

The AWD is one additional feature that most microcontrollers in the market do not have. AWD is more
like a comparator but with the exception that we can set both the upper and lower limits of this
comparator as per our requirement unlike fixed levels in other micros. The region between the upper
and lower limits is called guarded zone. Beyond the boundaries of the guarded zone, the AWD unit

kicks off.

The AWD unit is very useful in situations where we need to monitor the output of a sensor for example
and take quick actions. For instance, consider a temperature controller. We would want the controller
to turn on a heater should temperature fall below some level and turn it off when temperature rises
to some high value without complex calculations and constant monitoring in our application firmware.
In other microcontrollers, we would have accomplished this simple task using conditional IF-ELSE

statements.

|

10 1 ™ Analog Waichdog Event ool EOCIE
1 g Ll I -

i End of Conversion | 2D AWDIE

T [Fiag Masks

4" ADC Inteqrupt to ITC

{t

AWEN Enable bits {10 channels)

WS status bits | 10 channels)

ANALDG
WATCHDOG

High Threshaid {10-bits)

Low Threshokd [10-bits)

—

(10 % 10 bits) or (8 5 10 bits)

DATA BUFFER

Analog voltage

High threshold
HTR

Low threshold
LTR

Guarded Zone

Hardware Connection

Code Example

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void ADC1_setup(void);

ETMIIIEATEC

[ucHNg SID-HSNd-/MS] Ta

void led_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

void main()
unsigned int a1 = 0x0000;
clock_setup();
GPIO_setup();
ADC1_setup();

LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("STM8 AWD");
LCD_goto(0, 1);
LCD_putstr("A1");

while (TRUE)

{
ADC1_ClearFlag(ADC1_FLAG_EOC);

ADC1_StartConversion();
while(ADC1_GetFlagStatus(ADC1_FLAG_EQOC) == 0);

a1=ADC1_GetConversionValue();
led_print(4, 1, a1);

if(ADC1_GetFlagStatus(ADC1_FLAG_AWD))

GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
ADC1_ClearFlag(ADC1_FLAG_AWD);

else

GPIO_WriteHigh(GPIOD, GPIO_PIN_0);
}

delay_ms(90);

void clock_setup(void)
CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(DISABLE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV2);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV4);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)
{
GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_1, GPIO_MODE_IN_FL_NO_IT);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(GPIOD, GPIO_PIN_3, GPIO_MODE_IN_PU_NO_IT);

void ADC1_setup(void)

ADC1_Delnit();

ADC1_Init(ADC1_CONVERSIONMODE_SINGLE,
ADC1_CHANNEL_1,
ADC1_PRESSEL_FCPU_D10,
ADC1_EXTTRIG_GPIO,
DISABLE,
ADC1_ALIGN_RIGHT,
ADC1_SCHMITTTRIG_CHANNELT,
DISABLE);

ADC1_AWDChannelConfig(ADC1_CHANNEL_1, ENABLE);
ADC1_SetHighThreshold(600);
ADC1_SetLowThreshold(200);

ADC1_Cmd(ENABLE);

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value)
char chr = 0x00;

chr = ((value / 1000) + 0x30);
LCD_goto(x_pos, y_pos);
LCD_putchar(chr);

chr=(((value / 100) % 10) + 0x30);
LCD_goto((x_pos + 1), y_pos);
LCD_putchar(chr);

chr=(((value / 10) % 10) + 0x30);
LCD_goto((x_pos + 2), y_pos);
LCD_putchar(chr);

chr = ((value % 10) + 0x30);
LCD_goto((x_pos + 3), y_pos);
LCD_putchar(chr);

Explanation

The code for the AWD example is just as the one demonstrated in the ADC example. However, this
time the ADC channel is channel 1 (PB1). Setting up the AWD is simple. We just need to set the limits,
specify which channel to be monitored and enable the AWD unit.

ADC1_AWDChannelConfig(ADC1_CHANNEL_1, ENABLE);
ADC1_SetHighThreshold(600);
ADC1_SetLowThreshold(200);

Here we have set 600 and 200 ADC counts as upper and lower limits respectively.

In the main function, we are simply polling AWD flag. If an AWD (beyond boundary zone) event on
PB1 pin occurs the LED on PDO starts flashing. If PB1 senses voltage between 200 and 600 ADC counts,

the LED is turned off, indicating guarded zone.

if(ADC1_GetFlagStatus(ADC1_FLAG_AWD))

GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
ADC1_ClearFlag(ADC1_FLAG_AWD);

else

GPIO_WriteHigh(GPIOD, GPIO_PIN_0);

A

= -

=} 15 7L
el 1_5 s
ey B)2 LU L
=i -

os
s
-

Video link: https://www.youtube.com/watch?v=bvVNuVpeFPk

https://www.youtube.com/watch?v=bvVNuVpeFPk

Independent Watchdog (IWDG)

The IWDG is just the ordinary watchdog timer we usually find in any modern micro. The purpose of
this timer is to recover a micro from an unanticipated event that may result in unresponsive or erratic
behaviour. As the name suggests, this timer does not share anything with any other internal hardware
peripheral and is clocked by LSI (128kHz) only. Thus, it is invulnerable to main clock (HSE or HSI) failure.

IWDG_KR
128 kHz LS| I\:VDiSt_efR I:MDdG_R'L? key register
clock €g rel oa{ig'ls e‘r ;
o e 7-bit _ WDG reset
8-bit down-counter ——»
prescaler
Master Clock Mux
Input frequency R
= o
1-16 MHz HSIDIV MASTERCLK CPUCLK 16 e e
HSI RC ® - v -.:-H 0.5 | To CPU (MHz)
I8 s
Ls!
16 MHz =) .
LSI RC T - 2 To I2C (MHz)
- | L — — 2 To SPI (MHz)

LSI

= 1% To IWDG (KHz)

—= 2 Ta ADC (MHz)
AWU clock Flox
w51 @ §] 2 To Timers [MHz)
—
Prescaler opt bit } — 2 To UART/USART/LINUART (MHz)
HSE /1878 128 KHz o
= L z To AWU register clock (MHz)

D 128 To AWU counter cleck (KHz)

The IWDG works by decrementing a counter, counting time in the process. When the counter hits
zero, a reset is issued. Usually we would want that this reset never occurs and so the counter is
periodically updated in the application firmware. If for some reason, the counter is not refreshed, a
reset will occur, recovering the MCU from a disastrous situation.

Configuring the IWDG is very easy with SPL. There are certain steps to follow but SPL manages them
well internally. All we’ll need is to configure the IWDG and reload it periodically before time runs out.

The formula required to calculate timeout is given below:

where:
T = Timeout period

Tisi = s
B = o (PR20] +2)

R = RLR[7:0]+1

Typical values of timeout are as shown below:

Watchdog timeout period (LSl clock frequency = 128 kHz)

Timeout
Prescaler divider PR[2:0] bits
RL[7:0]= 0x00 RL[7:0]= OxFF
4 0 625 s 1590 ms
18 1 125 ps 3190 ms
16 2 250 ps 63.70 ms
132 3 500 ps 127 ms
164 4 1.00 ms 255 ms
128 5 2.00 ms 510 ms
1256 6 4.00 ms 1.02s
Hardware Connection
=
& &
ml %
w W
=)
—l
I —
= O

RCC_OSCIM [ZHE
RCC_OSCOUT [k

[U01INg SWI-HSNd-MS] T8

Code Example

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void IWDG_setup(void);

void main(void)

unsigned intt=0;

clock_setup();
GPIO_setup();

GPIO_WriteLow(GPIOD, GPIO_PIN_0);
for(t = 0; t < 60000; t++);

IWDG_setup();
while(TRUE)

GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
for(t = 0; t < 1000; t++)

if(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE)
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);

IWDG_ReloadCounter();
IWDG_WriteAccessCmd(IWDG_WriteAccess_Disable);

void clock_setup(void)

{

CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_LSIRDY) == FALSE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV4);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

{
GPIO_Delnit(GPIOB);
GPIO_Delnit(GPIOD);
GPIO_Init(GPIOB, GPIO_PIN_7, GPIO_MODE_IN_PU_NO_IT);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_PP_LOW_FAST);

}

void IWDG_setup(void)

{
IWDG_Enable();
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_128);
IWDG_SetReload(0x99);
IWDG_WriteAccessCmd(IWDG_WriteAccess_Disable);

}

Explanation

In this example, we need not to look at peripheral and CPU clock as IWDG is not dependent on them.
Still we can see that the CPU is running at 500kHz speed while the peripherals at 2MHz speed.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV4);

To setup the IWDG, we need to enable it first and then apply Write Access Protection key (0x55). We
just need to set the prescaler and the counter value. The down counter will start from this value and
count down to zero unless refreshed. In this example, the prescaler is set to 128 and reload value is
set to 153 (0x99). Thus, with these we get a timeout of approximately 300ms. After entering these
values we must prevent accidental changes in the firmware and so to do so the write access must be
disabled.

void IWDG_setup(void)

{
IWDG_Enable();
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
IWDG_SetPrescaler(IWDG_Prescaler_128);
IWDG_SetReload(0x99);
IWDG_WriteAccessCmd(IWDG_WriteAccess_Disable);
}

Disco board’s user button and LED are used for the demo. At the very beginning, the LED is lit for some
time before the IWDG is configured, indicating the start of the firmware. In the main loop, the LED is
toggled with some delay arranged by a for loop. Inside the loop, the button’s state is polled. If the
button is kept pressed it will always be in logic low state, reloading the IWDG counter. If its state
changes to logic high and 300ms passes out, a reset is triggered.

GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
for(t = 0; t < 1000; t++)

if(GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE)
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);

IWDG_ReloadCounter();
IWDG_WriteAccessCmd(IWDG_WriteAccess_Disable);

Note it is possible to calibrate LSI. It is however rarely needed.

Demo

Video link: https://www.youtube.com/watch?v=05XKoyOieHo

https://www.youtube.com/watch?v=05XKoy0ieHo

Window Watchdog (WWDG)

The WWDG is a bit more advanced watchdog timer. Unlike the IWDG, it will trigger a reset condition
if its counter is reloaded earlier or later than a predefined time window. This kind of timer is usually
found in high-end microcontrollers like ARMs, ATXMegas and recently released micros. Cool features

like this and others make me feel that indeed STM8s are high-end affordable 8-bit alternatives when
compared to traditional 8-bit MCUs.

RESET WATCHDOG WINDOW REGISTER (WWDG_WR)

I - W6| W5 | w4| W3 | w2 Wi| W0

comparator
=1 when

4@2{0 = W86:0 CMB

- Write WWDG_CR ‘ ‘
WATCHDOG CONTROL REGISTER (WWDG_CR)

WDGA T6 | T6 | T4 | T3 |T2 T | TO
7T-BIT DOWNCOUNTER (CNT)

fepy
(from clock) | WDG PRESCALER
> DIV 12288

The WWDG works by comparing a down counter against a window register. The counter can only be
refreshed when its value is greater than Ox3F and less than window register value. If the counter is
refreshed before the value set on window register or when the counter is less than or equal to 0x3F.
If the counter hits the value 0Ox3F, reset automatically triggers. It is programmer’s responsibility to
refresh the counter at proper time. Note unlike IWDG, WWDG is not independent of main clock.

TI[5:0] CHT downcounter
F 3

WDGWRE |— — — ™=

O6TF | |— — — = — — —

—— tme *
Refresh not allowed Refresh WndP‘-’a‘ (step = 12288/, yyag_cx!

TG bit _
n

Reset

The formula below can be used to calculate the WWDG timeout, tywoo expressed in ms:

t'INWDG = TCF'U x* 12288 = ET[EI'D] +1)

where Tepyyis the peripheral clock period expressed in ms

Hardware Connection

T_LIMK_SWIM
D1 [Green Led]

[Uo3INg Sa-HsNd-#As] 14

Code Example

The code example here demonstrates WWDG action. Simply Disco board’s user LED and button are
used. When the code starts executing, the LED starts blinking slowly, indicating the start of the code.
When the code executes the main loop, the LED blinks rapidly to indicate main loop execution. If the
button is pressed randomly the micro is reset because the counter is refreshed before the allowed
time. Sometimes the micro may not reset because the counter may be in the allowed window — hence
the name Window Watchdog.

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void WWDG_setup(void);

void main(void)

{

unsigned char i = 0x00;

clock_setup();
GPIO_setup();

for(i = 0x00; i < 0x04; i++)
{

GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
delay_ms(40);
}

WWDG_setup();
while(TRUE)
{

if((GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE) || ((WWDG_GetCounter() > 0x60) &&
(WWDG_GetCounter() < 0x7F)))

WWDG_SetCounter(0x7F);

}
GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
delay_ms(20);

void clock_setup(void)
CLK_Delnit();

CLK_HSECM(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV64);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERA4, DISABLE);

void GPIO_setup(void)
{

GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_7, GPIO_MODE_IN_PU_NO_IT);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_OD_HIZ_FAST);

void WWDG_setup(void)

WWDG_Init(0x7F, 0x60);

Explanation

There’s no way to enable watchdogs manually in software as they are always enabled. However, there
are configuration bits to select if the IWDG and the WWDG are enabled in software or hardware. They
only come in effect when configured. This is cool.

AFRY Fezerved

AFRE AFRE Alternate Function B emapping inactive
AFRE AFRE Alternate Function R emapping inactive
AFR4 Rezerved

AFR3 Reserved

AFRZ Reserved

AFR1 AFR1 Alternate Function R emapping inactive
AFRO Reserved

HSITRIM 3 bit an-the-fy trimming

LSI_EM LSI Clock not available az CPU clock source
DG _HW |ndependant Watchdog activated by Software
WA DG_HW Window Y atchdog activated by Software «
WwhNDG_HALT Mo Reset generated on HALT P0G active
EXTCLK Esternal Crystal connected to OSCIMAOSCOUT
CrkawUSEL LSI clock source selected for AL

FRSC 16MHz to 128KHz Prescaler

For WWDG, we just need to set the value of the down counter and the window register value only.

void WWDG_setup(void)

WWDG_Init(0x7F, 0x60);

We need to monitor the WWDG in order to reload it when it is the right time window.

while(TRUE)

{
if((GPIO_ReadInputPin(GPIOB, GPIO_PIN_7) == FALSE) || (WWDG_GetCounter() > 0x60) && (WWDG_GetCounter{() <
0x7F)))
{

WWDG_SetCounter(0x7F);

}
GPIO_WriteReverse(GPIOD, GPIO_PIN_0);
delay_ms(20);

Remember too early of too late will reset the micro.

Demo

Video link: https://www.youtube.com/watch?v=a JWHJCh -o

https://www.youtube.com/watch?v=a_JWHJCh_-o

Timer Overview

Timers are perhaps the most versatile piece of hardware in any micro. As their name tells, timers are
useful for measurement of timed events like frequency, time, phase sequence, etc. and generate
time-based events like PWM, waveform, etc.

Timers are also needed for touch sensing applications.
In any STM8 micro, there are three categories of timers. These are:

e Advanced Control Timer (TIM1)
e General Purpose Timers (TIM2, TIM3 & TIM5)
e Basic Timers (TIM4 & TIM6)

The basic working principle of all timers are same with some minor differences. Advanced timers are
mainly intended for applications requiring specialized motor control, SMPSs, inverters, waveform
generation, pulse width measurements, etc. Then there are general purpose timers that share almost
all the features of advanced timer without the advanced features like brake, dead-time control, etc.
Basic timers are all same as general purpose timers but lack PWM output/capture input pins and are
intended mainly for time base generations. Here’s the summary of all timers of STM8 micros:

Capture/ Timer
Timer C;g';:er Counter | Prescaler |compare ﬁ:::_:gl; Riteiiﬁt' Ii:rg;:‘:' Ez:ig::ll synchro-
ution type factor chan- outputs | counter input input mz.:*!u:_}n.f
nels chaining
[adTwlzr:an:elj Any integer With
Up/down from 1 to 4 3 Yes 1 1 TIMSS
control
timer) 65536 TIMG
TIM2
(general .
purpose 16-bit 3
timer) Any power of
2 from 1 to
TIM3 32768
(general Up 3 Mone MNo 0 0 Mo
purpose
timer)
TIM4 Any power of
(basic B-bit 2 from 1 to 1]
timer) 128
TIME 1
Any power of
(general g (shared
purpose 16-bit 2 r?rzr;};8 to 3 with
timer) Up MNone No TiM1) 0 Yes
TIMG Any power of
(basic B-bit 2 from 1 to 0 0
timer) 128

Unlike the timers of other micros, STM8 timers have the more functionality that are otherwise only
available in some special micros only. Timer cover a significant part of the reference manual. They are
so elaborate that it is not possible to describe all of them in just one post. Therefore, here we’ll be
exploring the basics for now.

Time Base Generation (TIM?2)

Time base generation is the most basic property of any timer and is also the most needed requirement
in embedded systems. This mode can be used with or without interrupt. We’'ll first check the method
firstly without interrupt and then with interrupt.

With time base generation, we can accurately time stuffs and events that are more precise than using
delays, loops or other methods. Time base generation utilizes hardware timers and so work
independently from other processes. It has many uses. For instance, with it we can avoid software
delays, generate time slots of a Real-Time Operating System (RTOS) and many other tasks.

TIME BASE UNIT

Tusares CK_P CH_CHNT,
= Prescaler I—}| UP-DOWN COUNTER |1—[Auto-reinad register I

The time base unit for all timers of STM8 is all same. There are a few differences. For example, Timer
1 (TIM1) has a repetition counter. It is like a counter within another counter. Other timers lack this
part. All timers can count up while advance timers can count down too.

The basic theory of time base generation is you have a peripheral clock which you would like to scale
according to your need. Thus, you prescale it and use the new clock to run a counter. The counter will
tick, incrementing count as time flies. It is just like counting from 0 to 100 and repeating from 0 again
after reaching 100. Shown below is the generalized formula for finding an important event called timer
reload:

(Prescaler x Reptiation Counter X Counts)

Time Event (Timer Reload) = 7
master

This is the amount of time that will pass before timer overflow event occurs and the timer restarts
from its initial count.

In my example, the peripheral or master clock is set to 2MHz. Thus, to make timer 2 (TIM2) reload
after roughly 2 seconds, | have to prescale it by a factor of 2048 and load it with 1952 counts. Note
that TIM2 doesn’t have a repetition counter and so it is set to 1.

(2048 x1952)
2 X 106

Time Event (Timer Reload) =

= 1.998s

=~ 2S

Hardware Connection

T_LIME_SWIM

D1 [Green Led]

FO1
FDO

st |

RCC_OSCIN [ZHE
RCC_OSCOUT i

= Lys

'|U|'DD sru:z:?:m:
PA3
PF4

£8d
234
Sdd
dd
£dd
<dd
Tad
0dd

[U01INg SWo-HSNd-MS] T8

Code Example

In this example, Disco board’s user LED is turned-on and off without using any software delay. TIM2 is
used to create time delay as such that the code is not stuck in a time-wasting loop.

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void TIM2_setup(void);

void main(void)

{
clock_setup();

GPIO_setup();
TIM2_setup();
while(TRUE)
{

if(TIM2_GetCounter() > 976)

GPIO_WriteHigh(GPIOD, GPIO_PIN_0);

GPIO_WriteLow(GPIOD, GPIO_PIN_0);

void clock_setup(void)
CLK_Delnit();

CLK_HSECMA(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)
{

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_0, GPIO_MODE_OUT_OD_HIZ_SLOW);

void TIM2_setup(void)
{
TIM2_Delnit();

TIM2_TimeBaselnit(TIM2_PRESCALER_2048, 1952);
TIM2_Cmd(ENABLE);

Explanation

Firstly, the CPU and the peripheral clock is set at 2MHz.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, ENABLE);

As explained earlier, to get 2 second timer reload interval we need to prescale the timer by 2048 and
load its counter with 1952. This is what should be the setup for TIM2:

void TIM2_setup(void)
TIM2_Delnit();

TIM2_TimeBaselnit(TIM2_PRESCALER_2048, 1952);
TIM2_Cmd(ENABLE);

Our goalis to keep the LED on for 1 second and off for 1 second. It takes 1952 TIM2 counts for 2 second
interval and so one second passes when this count is 976. Thus, in the main loop we are checking the
value of TIM2’s counter. From 0 to 976 counts, the LED is on and from 977 to 1952 counts, the LED is
off. Note that the LED’s positive end is connected to VDD and so it will turn on only PDO is low.

if(TIM2_GetCounter() > 976)
GPIO_WriteHigh(GPIOD, GPIO_PIN_0);
}

else

GPIO_WriteLow(GPIOD, GPIO_PIN_0);

Demo

Video link: https://youtu.be/ZstHDHAAHOM

https://youtu.be/ZstHDHAAHOM

Timer Interrupt (TIM4)

In this example uses the same concepts of the previous example but it is based on timer interrupt —
TIM4 interrupt. Timer interrupts are very important interrupts apart from other interrupts in a micro.
To me they are highly valuable and useful.

This example demonstrates how to scan and project information on multiple seven segment displays
with timer interrupt while the main loop can process the information to be displayed.

Hardware Connection

=%
O 0w w o ou o<

comM4
RCC_OSCIN |8} COM3
RCC_OSCOUT COM2

‘,_I B comi

ETMBS00IKITEC
LaFP3z

[uonng SWD-HSNd-Mms] 19

Code Example

main.c

#include "STM8S.h"

unsigned int value = 0x00;

unsigned char n = 0x00;
unsigned char seg = 0x01;
const unsigned char num[0x0A] = {0xCO0, OxF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90};

void GPIO_setup(void);
void clock_setup(void);
void TIM4_setup(void);

void main(void)

GPIO_setup();
clock_setup();
TIM4_setup();

while (TRUE)

valuet+;
delay_ms(999);

void GPIO_setup(void)

GPIO_Delnit(GPIOC);
GPIO_Init(GPIOC, ((GPIO_Pin_TypeDef)(GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7)),
GPIO_MODE_OUT_PP_HIGH_FAST);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_ALL, GPIO_MODE_OUT_PP_HIGH_FAST);

void clock_setup(void)

{

CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(DISABLE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, ENABLE);

void TIM4_setup(void)

TIM4_Delnit();
TIM4_TimeBaselnit(TIM4_PRESCALER_32, 128);
TIM4_ITConfig(TIM4_IT_UPDATE, ENABLE);
TIM4_Cmd(ENABLE);

enablelnterrupts();

stm8s it.h (top part only)

#ifndef __STM8S_IT_H
#define __STM8S_IT_H

@far @interrupt void TIM4_UPD_IRQHandler(void);

[* Includes *

#include "stm8s.h"

stm8s it.c (top part only)

#include "stm8s.h"
#include "stm8s_it.h"
extern unsigned int value;
extern unsigned char n;

extern unsigned char seg;
extern const unsigned char num[10];

void TIM4_UPD_IRQHandler(void)

{
switch(seg)
case 1:
{
n = (value / 1000);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xEQ);
break;
}
case 2:
{
n = ((value / 100) % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xD0);
break;
}
case 3:
{
n=((value /10) % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xB0);
break;
}
case 4:
{
n = (value % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0x70);
break;
}
}
segtt;

if(seg > 4)

seg=1;

!
TIM4_ClearFlag(TIM4_FLAG_UPDATE);

stm8_interrupt vector.c

#include "stm8s_it.h"
typedef void @far (*interrupt_handler_t)(void);
struct interrupt_vector {

unsigned char interrupt_instruction;
interrupt_handler_t interrupt_handler;

I
//@far @interrupt void NonHandledInterrupt (void)
Vi
/*in order to detect unexpected events during development,
it is recommended to set a breakpoint on the following instruction
7/
/return;
i

extern void _stext(); /* startup routine */

struct interrupt_vector const _vectab[] = {

{0x82, (interrupt_handler_t)_stext}, /* reset */
{0x82, NonHandledInterrupt}, /* trap */
{0x82, NonHandledInterrupt}, /* irq0 */
{0x82, NonHandledInterrupt}, /* irq1 */
{0x82, NonHandledInterrupt}, /* irq2 */
{0x82, NonHandledInterrupt}, /* irqg3 */
{0x82, NonHandledInterrupt}, /* irq4 */
{0x82, NonHandledInterrupt}, /* irg5 */
{0x82, NonHandledInterrupt}, /* irq6 */
{0x82, NonHandledInterrupt}, /* irq7 */
{0x82, NonHandledInterrupt}, /* irq8 */
{0x82, NonHandledInterrupt}, /* irq9 */
{0x82, NonHandledInterrupt}, /*irg10 */
{0x82, NonHandledInterrupt}, /* irq11 %/
{0x82, NonHandledInterrupt}, /* irq12 */
{0x82, NonHandledInterrupt}, /* irq13 */
{0x82, NonHandledInterrupt}, /* irq14 */
{0x82, NonHandledInterrupt}, /* irq15 */
{0x82, NonHandledInterrupt}, /* irq16 */
{0x82, NonHandledInterrupt}, /* irg17 */
{0x82, NonHandledInterrupt}, /* irq18 */
{0x82, NonHandledInterrupt}, /* irqg19 */
{0x82, NonHandledInterrupt}, /* irq20 */
{0x82, NonHandledInterrupt}, /* irg21 %/
{0x82, NonHandledInterrupt}, /* irq22 */
{0x82, (interrupt_handler_t)TIM4_UPD_IRQHandler}, /* irq23 */
{0x82, NonHandledInterrupt}, /* irqg24 */
{0x82, NonHandledInterrupt}, /* irg25 */
{0x82, NonHandledInterrupt}, /* irq26 */
{0x82, NonHandledInterrupt}, /* irq27 */
{0x82, NonHandledInterrupt}, /* irq28 */
{0x82, NonHandledInterrupt}, /* irq29 */

Explanation
Both the peripheral and CPU clocks are running at 2MHz.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, ENABLE);

TIM4 is a basic timer and so it is better to use it for such tasks. We initialize it by setting its prescaler
to 32 and loading its counter with 128. These values will make TIM4 overflow and interrupt every 2ms
—enough time to project info in one seven segment. There are 4 seven segment displays and so within
8ms all four are updated and your eyes see it as if all projecting info at the same time — a trick of vision.
Lastly, we need to enable what kind of interrupt we are expecting from the timer and finally enable
the global interrupt.

void TIM4_setup(void)

{
TIM4_Delnit();
TIM4_TimeBaselnit(TIM4_PRESCALER_32, 128);
TIM4_ITConfig(TIM4_IT_UPDATE, ENABLE);
TIM4_Cmd(ENABLE);
enablelnterrupts();

}

Remember the first interrupt example? We have to let the compiler know which interrupt we are
using. If you look at the datasheet, you'll see that TIM4 update/overflow is located in IRQ23. We need
this and so we should make the following change in the stm8_interrupt_vector.c file:

{0x82, (interrupt_handler_t)TIM4_UPD_IRQHandler}, /* irq23 */

Remember to add the interrupt header and source files as we are going to use interrupt here. Inside
the ISR, we do the scanning of each seven segment. Every time an overflow interrupt occurs, a seven
segment is changed. At the end of the ISR a counter is incremented to select the next display when
new overflow event occurs. Inside the Switch-Case, we turn on the seven segment and decide the
value that seven segment should show. Finally, the timer overflow/update flag is cleared.

switch(seg)

case 1:

{
n = (value / 1000);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xEQ);
break;

}

case 2:

{
n = ((value / 100) % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xD0);
break;

}

case 3:

n=((value /10) % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0xB0);

break;
}
case 4:
{
n = (value % 10);
GPIO_Write(GPIOD, num|n]);
GPIO_Write(GPIOC, 0x70);
break;
}
}
segtt;
if(seg > 4)
{

seg=1;

!
TIM4_ClearFlag(TIM4_FLAG_UPDATE);

Demo

Q000
Q000

T
o0
o0
00

Q00
C00ws

Q0000

Q000
00006
0000
0000

ol |
Ml I|1l

ey !0000
Al
|

W T T Al e <l

: A e
P " e s o | Ty g

). oM

‘n

’ " vl

(B A T

A e

https://youtu.be/Sa20Hf2N4gE

Video link:

https://youtu.be/Sa20Hf2N4gE

General Purpose Pulse Width Modulation (TIM2 PWM)

Pulse Width Modulation (PWM) is a must-have feature of any microcontroller. PWM has many uses
like motor control, SMPSs, lighting control, sound generation, waveform generation, etc. Unlike other
micros which have limited PWM channels, STM8 has several PWM channels. For instance, STM8S003K
has seven independent PWM channels, three of which belong to TIM2 — a general purpose (GP) timer.

PWMs generated by GP timers are basic PWMs. They can be used for simple tasks like LED brightness
control, servo motor control, etc. that don’t require advanced features like dead-time, brake or
complementary waveform generation. In this section, we will see how to use TIM2 to generate simple
PWMs.

Please note that in more advanced STM8 micros, timer I/Os are dependent on alternate function
configuration bits. Check those bits before uploading codes. In some STM8 micros, the I/Os are also
remappable, meaning that the I/Os can be swapped in different GP10s. Take the help of STM8CubeMx
if needed.

Hardware Connection

TIMZ2_CH1
TIMZ2_CH2

RCC_OSCIN
RCC_OSCOUT

TIM2_CH3

[uonng SIWo-HSNd-MS] T4

Code Example

This is a pretty simple example. Here all three channels of TIM2 are used to smoothly fade and glow
three LEDs connected to the timer channels.

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void TIM2_setup(void);

void main(void)
signed int pwm_duty = 0x0000;

clock_setup();
GPIO_setup();
TIM2_setup();

while(TRUE)
for(pwm_duty = 0; pwm_duty < 1000; pwm_duty += 10)
{

TIM2_SetCompare1(pwm_duty);
TIM2_SetCompare2(pwm_duty);
TIM2_SetCompare3(pwm_duty);
delay_ms(10);

}

for(pwm_duty = 1000; pwm_duty > 0; pwm_duty -= 10)

TIM2_SetCompare1(pwm_duty);
TIM2_SetCompare2(pwm_duty);
TIM2_SetCompare3(pwm_duty);
delay_ms(10);

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECM(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER2, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

{
GPIO_Delnit(GPIOA);

GPIO_Init(GPIOA, GPIO_PIN_3, GPIO_MODE_OUT_PP_HIGH_FAST);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, ((GPIO_Pin_TypeDef)GPIO_PIN_3 | GPIO_PIN_4), GPIO_MODE_OUT_PP_HIGH_FAST);

void TIM2_setup(void)

{
TIM2_Delnit();

TIM2_TimeBaselnit(TIM2_PRESCALER_32, 1000);
TIM2_OC1init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_HIGH);
TIM2_OC2Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY _LOW);
TIM2_OC3Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_HIGH);
TIM2_Cmd(ENABLE);

Explanation

Again, the CPU and the peripheral clock is set at 2MHz.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER2, ENABLE);
Next, we need to configure the PWM GPIOs as outputs.

void GPIO_setup(void)

GPIO_Delnit(GPIOA);
GPIO_Init(GPIOA, GPIO_PIN_3, GPIO_MODE_OUT_PP_HIGH_FAST);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, ((GPIO_Pin_TypeDef)GPIO_PIN_3 | GPIO_PIN_4), GPIO_MODE_OUT_PP_HIGH_FAST);

i

Just like other microcontrollers, PWM generation involves a timer. Here as said TIM2 is that timer. We
need to set time base first before actually configuring the PWM channels.

void TIM2_setup(void)

{
TIM2_Delnit();
TIM2_TimeBaselnit(TIM2_PRESCALER_32, 1000);
TIM2_OC1Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_HIGH);
TIM2_OC2Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_LOW);
TIM2_OC3Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_HIGH);
TIM2_Cmd(ENABLE);

i

In the codes above, TIM2 has a time base of 16ms or 62.5kHz. This time base is further divided by the
Output Compare (OC) unit. Thus, here the 62.5kHz base is further divided by 1000 to get 62.5Hz PWM
frequency. The maximum duty cycle is therefore 1000. Additionally, we can set PWM polarity and
command the channel if or if not should it behave in an inverted manner.

To change PWM duty, we need to call the following function:
TIM2_SetCompareX(pwm_duty); /| where X represents channel ID (1, 2 or 3)

Note that in STM8 micros, there is a trade-off between duty cycle and PWM frequency. If the PWM
resolution, i.e. duty cycle is big then PWM frequency is small and vice-versa. This is true for all timers.

L‘&ul W‘ ~m| T“"“m %M'&
g e M -
i1 ’T'.‘l!-.'ﬂ; . (11 WL
Ll ey '4"2"; .a'-L-t'} mfm':%'\ll) '
B (I = o
lJ.“,, zEuu = p w“ lL]:L m_i’% lﬁl
o = = -
| v#t.h = 1==‘.lbll ’—Nl =S|jf==
7"'_‘ IN’ =l

| =SS
'u‘f =0l :;_lm =

W= e
- LB i
R
o LR
: ‘//”.l ;"]"p ’
iy - gt e 200
FUTTE B 7T PRS T R T I 000
000

58 =

00000060 .

Q
Qe

00000
000000

e il 2 'noooo(d/—
LR #HEO 000004

00000

00000000
00000000 .3

b gy Mg, iy e
g b tlllor o o ey gpramatilan i
My, riaillig sl mf.'m.‘;
\ ; |
=7l H‘ wl”l“‘"‘.‘
., ; — L
P !lh‘.; 2l . : ey)

i/ - | | ||| [AR | ?'h' .,..v. =il

Video link: https://www.youtube.com/watch?v=BPS5unUHDz4

https://www.youtube.com/watch?v=BPS5unUHDz4

Advanced Pulse Width Modulation (TIM1 PWM)

Timer 1 (TIM1) is an advance timer and so the PWMs generated by it have several additional features
that are not available with other timers. For example, it is possible to generate complimentary PWMs
with TIM1. Up to three sets of complementary PWMs can be generated. Such PWMs are useful in
designing three phase inverters, rectifiers and other power-related tasks. TIM1 PWMs are also very
useful for motor control applications. It is also possible to add dead-time and brake. Apart from these
TIM1 can also generate PWMs just like GP timers. In this mode however, complimentary PWM outputs
are unavailable and up to four independent PWM channels can be made available.

In this example, | have demonstrated how to create complementary PWMs in TIM1 PWM channel 1.

Hardware Connection

| 01 [Green Led]

s T_LIMK_SWIM

FD7
FD&
FD3
FD4
FD3
FD2
FD1
FDO -

RCC_OSCIN ek |
RCC_OSCOUT [l

4

TIM1_CH1

o o
m m
J o

MTHD TWIL

[UEng SlWD-HSNd-MS] T4

Code Example

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void TIM1_setup(void);

void main(void)

{

signedint i = 0;

clock_setup();
GPIO_setup();
TIM1_setup();

while(TRUE)
for(i = 0; i< 1000; i += 1)

TIM1_SetCompare1(i);
delay_ms(1);

}
for(i = 1000; i > 0; i = 1)

TIM1_SetCompare1(i);
delay_ms(1);

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_0, GPIO_MODE_OUT_PP_HIGH_FAST);

GPIO_Delnit(GPIOC);

GPIO_Init(GPIOC, GPIO_PIN_1, GPIO_MODE_OUT_PP_HIGH_FAST);

void TIM1_setup(void)

TIM1_Delnit();

TIM1_TimeBaselnit(16, TIM1_COUNTERMODE_UP, 1000, 1);

TIM1_OCTInit(TIM1_OCMODE_PWMT1,
TIM1_OUTPUTSTATE_ENABLE,
TIM1_OUTPUTNSTATE_ENABLE,
1000,
TIM1_OCPOLARITY_LOW,
TIM1_OCNPOLARITY_LOW,
TIM1_OCIDLESTATE_RESET,
TIM1_OCNIDLESTATE_RESET);

TIM1_CtriPWMOutputs(ENABLE);
TIM1_Cmd(ENABLE);

Explanation
This time we used the full 16MHz speed of HSI both for peripheral and CPU clocks:

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, ENABLE);

Like as with the previous example PWM output GPIOs are set as outputs:

void GPIO_setup(void)

{
GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_0, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Delnit(GPIOC);
GPIO_Init(GPIOC, GPIO_PIN_1, GPIO_MODE_OUT_PP_HIGH_FAST);
}

TIM1 and OC channel initialization is just like the previous example with some minor differences. The
time base generation part seems to have some additional arguments. These are because:

e Unlike other timers, TIM1 prescaler value is not a fixed set of multiples of 2.

e The counting mode is not just up mode counting. Counting mode can also be down counting.
e TIM1 has additional repetition counter.

e Except the basic timers all timers in STM8 are 16-bit timer.

If you open the header file for TIM1, you’ll see many functions. Many of these functions are not
available with other timers, expressing the power of an advance timer.

Likewise, there are some additional info we must feed when configuring the OC channels. We need to
set info about complementary channels even if we don’t need them. We can additionally set the
default idle states of PWMs apart from polarities.

void TIM1_setup(void)
TIM1_Delnit();
TIM1_TimeBaselnit(16, TIM1_COUNTERMODE_UP, 1000, 1);

TIM1_OCTInit(TIM1_OCMODE_PWMT1,
TIM1_OUTPUTSTATE_ENABLE,
TIM1_OUTPUTNSTATE_ENABLE,
1000,

TIM1_OCPOLARITY_LOW,
TIM1_OCNPOLARITY_LOW,
TIM1_OCIDLESTATE_RESET,
TIM1_OCNIDLESTATE_RESET);

TIM1_CtrPWMOutputs(ENABLE);
TIM1_Cmd(ENABLE);

To change the duty cycle of a channel, we need to call this function:

TIM1_SetCompareX(duty_cycle); /| where X represents channel ID (1, 2, 3 or 4)

Complementary outputs occur in pairs and so they are interdependent. That’s why there is no
separate function for outputs labelled N.

Demo

T
-
: :

Analyzer
2wy e

¥ Annotations
I

¥ Analyzers

= Capture

Video link: https://youtu.be/uclCXH1ZPWU

https://youtu.be/uclCXH1ZPWU

Timer Input Capture (TIM1 & TIM?2)

Input capture is needed for measurements of pulses, pulse widths, frequencies, phase detection and
similar stuffs. With external interrupts these measurements can be done with some limitations.
However, using timer capture has some serious benefits. First of all, accuracy of measurements and
secondly timer capture simplifies many tasks as timers themselves time stuffs properly. Dedicated
hardware make stuffs like PWM measurement less complex and resource-friendly too.

STMS8 timers have several capture channels just like output compare channels (PWM). The number of
input capture channels is same as the number of PWM channels. Except basic timers all timers have
input capture option.

Hardware Connection

TIMZ_CH1

| o7
RCC_OSCIN |EiuE .__ i B3]
RCC_OSCOUT [. :]
b4
EM
RS
TIM1_CH1

[ucHNg SID-HSNd-/MS] Ta

Code Example

In this demo, TIM2 is configured to generate PWM on its CH1 output. TIM1 is configured to capture
every rising edge of incoming waveform at its input capture channel CH1. When a capture event
occurs, the current time count of TIM1 is saved. By deducting the recent capture count from the
previous capture count, we can measure time period of the incoming PWM signal and hence its
frequency. If the frequency is too high, TIM1 may overflow and so we need to take care of it too. We,
thus, need to check TIM1 overflow event too.

main.c

#include "STM8S.h"
#include "lcd.h"

unsigned int overflow_count = 0;
unsigned long pulse_ticks = 0;
unsigned long start_time = 0;
unsigned long end_time = 0;

void clock_setup(void);
void GPIO_setup(void);
void TIM1_setup(void);
void TIM2_setup(void);
void led_print(unsigned char x_pos, unsigned char y_pos, unsigned long value);

void main()
unsigned long time_period = 0;

clock_setup();
GPIO_setup();
TIM1_setup();
TIM2_setup();
LCD_init();

LCD_clear_home();
LCD_goto(0, 0);
LCD_putstr("T/ms:");
delay_ms(10);

while(TRUE)
time_period = pulse_ticks;

led_print(0, 1, time_period);
delay_ms(400);

void clock_setup(void)
CLK_Delnit();

CLK_HSECmd(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV8);

CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV2);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER2, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERA4, DISABLE);

void GPIO_setup(void)

GPIO_Delnit(GPIOC);
GPIO_Init(GPIOC, GPIO_PIN_1, GPIO_MODE_IN_FL_NO_IT);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_4, GPIO_MODE_OUT_PP_HIGH_FAST);

}
void TIM1_setup(void)
{
TIM1_Delnit();
TIM1_TimeBaselnit(2000, TIM1_COUNTERMODE_UP, 55535, 1);
TIM1_ICInit(TIM1_CHANNEL_1, TIM1_ICPOLARITY_RISING, TIM1_ICSELECTION_DIRECTTI, 1,1);
TIM1_ITConfig(TIM1_IT_UPDATE, ENABLE);
TIM1_ITConfig(TIM1_IT_CC1, ENABLE);
TIM1_Cmd(ENABLE);
enablelnterrupts();
}
void TIM2_setup(void)
{
TIM2_Delnit();
TIM2_TimeBaselnit(TIM2_PRESCALER_32, 1250);
TIM2_OC1Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_LOW);
TIM2_SetCompare1(625);
TIM2_Cmd(ENABLE);
}

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned long value)
char tmp[6] = {0x20, 0x20, 0x20, 0x20, 0x20, 0x20} ;

tmp[0] = (((value / 100000) % 10) + 0x30);
tmp[1] = (((value / 10000) % 10) + 0x30);
tmp[2] = (((value / 1000) % 10) + 0x30);
tmp[3] = (((value / 100) % 10) + 0x30);
tmp[4] = (((value / 10) % 10) + 0x30);
tmp[5] = ((value % 10) + 0x30);

LCD_goto(x_pos, y_pos);
LCD_putstr(tmp);

stm8_interrupt vector.c (Interrupt vector address part only)

{0x82, (interrupt_handler iTIM1_UPD_IRQHandler), /*irq11 */
{0x82, (interrupt_handler_t)TIM1_CH1_CCP_IRQHandler}, /*irq12 ¥/

stm8s _it.h (Top part only)

#ifndef __STM8S_IT_H
#define __STM8S_IT_H

@far @interrupt void TIM1_UPD_IRQHandler(void);
@far @interrupt void TIM1_CH1_CCP_IRQHandler(void);

/* Includes ¥/
#include "stm8s.h"

stm8s it.c (Top part only)

#include "stm8s.h"
#include "stm8s_it.h"

extern unsigned int overflow_count;
extern unsigned long pulse_ticks;
extern unsigned long start_time;
extern unsigned long end_time;

void TIM1_UPD_IRQHandler(void)

{
overflow_count++;
TIM1_ClearlTPendingBit(TIM1_IT_UPDATE);
TIM1_ClearFlag(TIM1_FLAG_UPDATE);

}

void TIM1_CH1_CCP_IRQHandler(void)

{
end_time = TIM1_GetCapture1();
pulse_ticks = ((overflow_count << 16) - start_time + end_time);
start_time = end_time;
overflow_count = 0;
TIM1_ClearlTPendingBit(TIM1_IT_CC1);
TIM1_ClearFlag(TIM1_FLAG_CC1);

Explanation

The clocks and peripherals are set first. We are using 2MHz peripheral clock and the CPU is running
at 0.5MHz.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV2);

dK_PeripheralClockConﬁg(CLK_PERIPHERAL_TIMER1, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, ENABLE);

GPIOs must be set too. Since TIM?2 is to output PWM, its CH1 must be set output. Likewise, TIM1’s
CH1 GPIO must be set as an input.

GPIO_Delnit(GPIOC);
GPIO_Init(GPIOC, GPIO_PIN_1, GPIO_MODE_IN_FL_NO_IT);

GPIO_Delnit(GPIOD);
GPIO_Init(GPIOD, GPIO_PIN_4, GPIO_MODE_OUT_PP_HIGH_FAST);

TIM1 need to be configured for input capture. We need to set time base for TIM1 first. It is set as such
that TIM1 will overflow every second. Then we set input capture channel by specifying the edge
sensitivity, channel, mode and scalars. Since we will be using interrupts, we must enable relevant
interrupts.

void TIM1_setup(void)
{

TIM1_Delnit();

TIM1_TimeBaselnit(2000, TIM1_COUNTERMODE_UP, 55535, 1);

TIM1_ICInit(TIM1_CHANNEL_1, TIM1_ICPOLARITY_RISING, TIM1_ICSELECTION_DIRECTTI, 1, 1);
TIM1_ITConfig(TIM1_IT_UPDATE, ENABLE);

TIM1_ITConfig(TIM1_IT_CC1, ENABLE);

TIM1_Cmd(ENABLE);

enablelnterrupts();

TIM2 is set for PWM generation on its CH1. The generated PWM will have a frequency of 50Hz and
50% duty cycle. The setup of TIM2 should be by now self-explanatory:

void TIM2_setup(void)

{
TIM2_Delnit();
TIM2_TimeBaselnit(TIM2_PRESCALER_32, 1250);
TIM2_OC1Init(TIM2_OCMODE_PWM1, TIM2_OUTPUTSTATE_ENABLE, 1000, TIM2_OCPOLARITY_LOW);
TIM2_SetCompare1(625);
TIM2_Cmd(ENABLE);
}

In the vector table of stm8_interrupt_vector.c file, we need to specify the interrupts we will be
using:

{0x82, (interrupt_handler_t)TIM1_UPD_IRQHandler}, /* irq11 */
{0x82, (interrupt_handler_t)TIM1_CH1_CCP_IRQHandler}, /*irq12 */

We have to specify the interrupt subroutine (ISR) prototype functions in the stm8s_it.h file. These
functions are the places where the code will jump when respective interrupt occurs:

@far @interrupt void TIM1_UPD_IRQHandler(void);
@far @interrupt void TIM1_CH1_CCP_IRQHandler(void);

The ISR functions are coded in the stm8s_it.c file:

void TIM1_UPD_IRQHandler(void)

{
overflow_count++;
TIM1_ClearlTPendingBit(TIM1_IT_UPDATE);
TIM1_ClearFlag(TIM1_FLAG_UPDATE);

}

The first part is dealing with TIM1 overflow. If a capture occurs when TIM1 count is near to reset value
we need to take this account. This part does so and an overflow counter is incremented.

void TIM1_CH1_CCP_IRQHandler(void)

{
end_time = TIM1_GetCapture1();

pulse_ticks = ((overflow_count << 16) - start_time + end_time);
start_time = end_time;

overflow_count = 0;

TIM1_ClearlTPendingBit(TIM1_IT_CC1);
TIM1_ClearFlag(TIM1_FLAG_CC1);

}

The second part is where TIM1 capture is recorded. Once a rising edge is captured, an interrupt is
issued. In the interrupt, we must first save the current TIM1 counter count in the variable named
end_time. The formula for pulse tick is then computed. Note how the TIM1 overflow is addressed in
the formula. The new start time should be the previous capture time because we need to deduct old
capture count from new capture count. Lastly, overflow counter, capture flag and pending interrupts
are cleared.

In the main loop, we are just displaying the time period of capture in a LCD while everything is being
processed in the background by interrupts:

while(TRUE)

{
time_period = pulse_ticks;
led_print(0, 1, time_period);
delay_ms(400);

Demo

Video link: https://youtu.be/bzLUDWUFQTwW

https://youtu.be/bzLUDwuFQTw

Communication Overview

STM8 microcontrollers are packed with several communication interfaces. These interfaces are
needed to communicate with external devices like sensors, actuators, drives, etc. The most commonly
used ones are Serial Communication (UART), Serial Peripheral Interface (SPI) and Inter-Integrated
Circuit (/12C). There are also other additional more robust communication interfaces like Controller
Area Network (CAN), Local Interconnect Network (LIN), Infrared Data Association (IrDA) and RS-485.
The latter communications will not be discussed here in this article and are kept for future issues.
These are methods are, however, not frequently used and are special forms of communications. For
example, CAN and LIN are mostly used in automotive industries. Each method communication has its
own advantages and disadvantages. Here we'll see the individual basics of various methods of
communications.

Differential communication with
2 1Mbps 5km Several
multi-master support

In STM8 microcontrollers, LIN, IrDA, RS-485 and UART all share the UART hardware peripheral. For
other communications, there are dedicated separate hardware. We will now be exploring the basic
ones here.

Serial Communication (UART)

Serial communication is perhaps the mostly-used classic communication method for interfacing a PC
or other machines with a micro. With just two wire, we can achieve a full-duplex point-to-point
communication. Owing to its simplicity and wide usage, it is the communication interface backbone
that is used with GSM modems, RF modules, Bluetooth devices like RN-52, Wi-Fi devices like the
popular ESP8266, etc. It is also widely used in industries. Other communications rely on it, for example,
RS-485, LIN, etc.

TX RX

— Computer/Modem/Comm

unication Modules (Wi-Fi,
STMS8 Microcontroller Serial Communication Bluetooth,

etc.)/Sensors/Other

Hardware/Microcontroller
RX X

Most STM8s have at least one UART module. Some have more than one. Different UARTs have
different features as shown:

UART configurations

Feature UART1 UART2 UART3 UART4
Asynchronous mode X X X X
Multiprocessor communication X X X X
Synchronous communication X X NA X
Smartcard mode X X NA X
IrDA mode X X NA X
Single-wire Half-duplex mode X NA NA X
LIN master mode X X X X
LIN slave mode NA X X X

X = supported; NA = not applicable.

To learn more about UART visit the following link:
https://learn.mikroe.com/uart-serial-communication/

The UARTSs of STM8 micros are so robust and packed with so many features that it is quite impossible
to explain them all in this one article. Here we will explore the basic serial communication only. LIN
and IRDA will hopefully be covered in future articles.

https://learn.mikroe.com/uart-serial-communication/

Hardware Connection

RCC_OSCIN |igau}
RCC_OSCouUT

Code Example

#include "STM8S.h"

void clock_setup(void);
void GPIO_setup(void);
void UART1_setup(void);

void main(void)

{

unsigned char i = 0;
charch=0;

clock_setup();

[uonng SWI-HSNd-MS] 19

UART1_RX

UART1_TX

D7
D6
D5
D4
EN

GPIO_setup();
UART1_setup();
LCD_init();
LCD_clear_home();

LCD_goto(0, 0);
LCD_putstr("TX:");
LCD_goto(0, 1);
LCD_putstr("RX:");

while(TRUE)
if(UART1_GetFlagStatus(UART1_FLAG_RXNE) == TRUE)

ch = UART1_ReceiveData8();
LCD_goto(7,1);

LCD_putchar(ch);
UART1_ClearFlag(UART1_FLAG_RXNE);
UART1_SendData8(i + 0x30);

}
if(UART1_GetFlagStatus(UART1_FLAG_TXE) == FALSE)

LCD_goto(7, 0);
LCD_putchar(i + 0x30);
j++;

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(DISABLE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HS|,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)
GPIO_Delnit(GPIOD);

GPIO_Init(GPIOD, GPIO_PIN_5, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(GPIOD, GPIO_PIN_6, GPIO_MODE_IN_PU_NO_IT);

void UART1_setup(void)

UART{_Delnit();

UART1_Init(9600,
UART1_WORDLENGTH_8D,
UART1_STOPBITS_1,
UART1_PARITY_NO,
UART1_SYNCMODE_CLOCK_DISABLE,
UART1_MODE_TXRX_ENABLE);

UART1_Cmd(ENABLE);

Explanation
The peripheral and CPU clocks are set at 2MHz:

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

'(.IlKfPeripheralClockConﬁg(CLK_PERIPHERAL_UART1, ENABLE);

The TX-RX GPIO pins are set as output and input respectively:
GPIO_Delnit(GPIOD);

GPIO_Init(GPIOD, GPIO_PIN_5, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(GPIOD, GPIO_PIN_6, GPIO_MODE_IN_PU_NO_IT);

UART setup is straightforward. We just need to set baud rate, no. of data bits, no. of stop bit, parity
and type of communication (synchronous or asynchronous).

void UART1_setup(void)
UART1_Delnit();

UART1_Init(9600,
UART1_WORDLENGTH_8D,
UART1_STOPBITS_1,
UART1_PARITY_NO,
UART1_SYNCMODE_CLOCK_DISABLE,
UART1_MODE_TXRX_ENABLE);

UART1_Cmd(ENABLE);

In the main code, we are checking both transmission complete and reception complete flags. With
these flags, we will know if new data arrived and if it is possible to send a new data.

The first part checks if any new data received. That’s why the IF condition is checking if the RX buffer
is empty or not. If it is not empty then new data must have arrived. The new data (a character here) is
fetched and displayed on a LCD. Then we clear the RX buffer not empty flag to enable reception of
new data. After that we are sending some data to the host PC over the UART.

if(UART1_GetFlagStatus(UART1_FLAG_RXNE) == TRUE)
{

ch = UART1_ReceiveData8();
LCD_goto(7, 1);

LCD_putchar(ch);
UART1_ClearFlag(UART1_FLAG_RXNE);
UART1_SendData8(i + 0x30);

In the second part, we are checking if the last data was sent from our STM8 micro. The data sent is
then displayed on LCD.

if(UART1_GetFlagStatus(UART1_FLAG_TXE) == FALSE)
LCD_goto(7, 0);

LCD_putchar(i + 0x30);
j++;

Please note that both of these flags are very important.

L

R

Video link: https://youtu.be/uo2tYDUnMmE

https://youtu.be/uo2tYDUnMmE

Serial Peripheral Interface (SPI)

SPI communication is an onboard synchronous communication method and is used by a number of
devices including sensors, TFT displays, GPIO expanders, PWM controller ICs, memory chips, addon
support devices, etc.

There’s always one master device in a SPI communication bus which generates clock and select
slave(s). Master sends commands to slave(s). Slave(s) responds to commands sent by the master. The
number of slaves in a SPI bus is virtually unlimited. Except the chip selection pin, all SPI devices in a
bus can share the same clock and data pins.

Typical full-duplex SPI bus requires four basic I/O pins:

Master-Out-Slave-In (MOSI) connected to Slave-Data-In (SDI).
Master-In-Slave-Out (MIS0) connected to Slave-Data-Out (SDO).
Serial Clock (SCLK) connected to Slave Clock (SCK).

Slave Select (SS) connected to Chip Select (CS).

SDI |
[>
STM8 Microcontroller <‘M|go NN | SPI-based Device
SCK

(Master) (Slave)

—
MTUUUY o
—

55

In general, if you wish to know more about SPI bus here are some cool links:

https://learn.mikroe.com/spi-bus/

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf

http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus/

https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi

http://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

STM8s have SPI hardware that are more capable than the SPI hardware found in other micros. An
additional feature of STMS&’s SPl is the hardware CRC. This feature ensures reliable data
communication between devices.

https://learn.mikroe.com/spi-bus/
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus/
https://embeddedmicro.com/tutorials/mojo/serial-peripheral-interface-spi
http://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

Hardware Connection

LINK_SWIM
| D1 [Green Led]

RCC_OSCIM SFI_MOSI
RCC_OSCoUT SPI_SCK
SPI_SS

m
—
—
w
<
0
_
w
+
[
=
w
m
g
=
—

Code Example

main.c

#include "STM8S.h"
#include "MAX72XX.h"

void clock_setup(void);
void GPIO_setup(void);
void SPI_setup(void);

void main()

{
unsigned char i = 0x00;
unsigned char j = 0x00;

volatile unsigned char temp[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

const unsigned char text[96] =

{

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x7E, 0x04, 0x08, 0x08, 0x04, Ox7E, 0x00, /M
0x00, 0x42, 0x42, OX7E, Ox7E, 0x42, 0x42, 0x00, /I
0x00, 0x3C, 0x42, 0x42, 0x42, 0x42, 0x24, 0x00, //C
0x00, 0x7E, Ox1A, Ox1A, Ox1A, 0x2A, 0x44, 0x00, /R
0x00, 0x3C, 0x42, 0x42, 0x42, 0x42, 0x3C, 0x00, ~ //O
0x00, 0x7C, 0x12, 0x12, 0x12, 0x12, 0x7C, 0x00, ~ //A
0x00, Ox7E, Ox1A, Ox1A, Ox1A, 0x2A, 0x44, 0x00, /R
0x00, OX7E, Ox7E, 0x4A, 0x4A, 0x4A, 0x42, 0x00, //E
0x00, Ox7E, 0x04, 0x08, 0x10, 0x20, Ox7E, 0x00, ~ /N
0x00, 0x7C, 0x12, 0x12, 0x12, 0x12, 0x7C, 0x00, /A
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

clock_setup();
GPIO_setup();
SPI_setup();
MAX72xx_init();

while(TRUE)
for(i = 0; i < sizeof(temp); i++)

templi] = 0x00;
}

for(i = 0; i < sizeof(text); i++)
for(j = 0; j < sizeof(temp); j++)

temp[j] = text[(i + j)];
MAXT2xx_write((1 + j), templj]);
delay_ms(9);

void clock_setup(void)
CLK_Delnit();

CLK_HSECm(DISABLE);

CLK_LSICmd(DISABLE);

CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)

GPIO_Delnit(GPIOC);

GPIO_Init(GPIOC, ((GPIO_Pin_TypeDef)GPIO_PIN_5 | GPIO_PIN_6), GPIO_MODE_OUT_PP_HIGH_FAST);

void SPI_setup(void)

SPI_Delnit();

SPI_Init(SPI_FIRSTBIT_MSB,
SPI_BAUDRATEPRESCALER_2,
SPI_MODE_MASTER,
SPI_CLOCKPOLARITY_HIGH,
SPI_CLOCKPHASE_1EDGE,
SPI_DATADIRECTION_1LINE_TX,
SPI_NSS_SOFT,
0x00);

SPI_Cmd(ENABLE);

MAX72xx.h

#include "STM8S.h"

#define CS_pin
#define CS_port

#define NOP
#define DIGO
#define DIG1
#define DIG2
#define DIG3
#define DIG4
#define DIG5
#define DIG6
#define DIG7

#define decode_mode_reg
#define intensity_reg
#define scan_limit_reg
#define shutdown_reg
#define display_test_reg

#define shutdown_cmd
#define run_cmd

#define no_test_cmd
#define test_cmd

#define digit_0_only

#define digit_0_to_1

#define digit_0_to_2

#define digit_0_to_3

#define digit_0_to_4

#define digit_0_to_5

#define digit_0_to_6

#define digit_0_to_7

#define No_decode_for_all
#define Code_B_decode_digit_0
#define Code_B_decode_digit_0_to_3
#define Code_B_decode_for_all

GPIO_PIN_4
GPIOC

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08

0x09
0x0A
0x0B
0x0C
0xOF

0x00
0x01

0x00
0x01

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x00
0x01
0xOF
OxFF

void MAX72xx_init(void);
void MAXT2xx_write(unsigned char address, unsigned char value);

MAX72xx.c

#include "MAX72xx.h"

void MAXT 2xx_init(void)
{
GPIO_Init(CS_port, CS_pin, GPIO_MODE_OUT_PP_HIGH_FAST);

MAXT 2xx_write(shutdown_reg, run_cmd);
MAXT72xx_write(decode_mode_reg, 0x00);
MAXT72xx_write(scan_limit_reg, 0x07);
MAXT72xx_write(intensity_reg, 0x04);
MAXT72xx_write(display_test_reg, test_cmd);
delay_ms(10);

MAXT72xx_write(display_test_reg, no_test_cmd);

void MAXT2xx_write(unsigned char address, unsigned char value)
{
while(SPI_GetFlagStatus(SPI_FLAG_BSY));
GPIO_WriteLow(CS_port, CS_pin);

SPI_SendData(address);
while(!SPI_GetFlagStatus(SPI_FLAG_TXE));

SPI_SendData(value);
while(!SPI_GetFlagStatus(SPI_FLAG_TXE));

GPIO_WriteHigh(CS_port, CS_pin);

Explanation

This time we are again using the max peripheral and CPU clock:

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

dKfPeripheralClockConﬁg(CLK_PERIPHERAL_SPI, ENABLE);

We also need to set the GPIOs:

#define CS_pin GPIO_PIN_4
#define CS_port GPIOC

GPIO_Delnit(GPIOC);

GPIO_Init(CS_port, CS_pin, GPIO_MODE_OUT_PP_HIGH_FAST);

GPIO_Init(GPIOC, ((GPIO_Pin_TypeDef)GPIO_PIN_5 | GPIO_PIN_6), GPIO_MODE_OUT_PP_HIGH_FAST);

Note we can use definitions to make things meaningful. The GPIOs should be configured as fast 1/Os

because SPI communication is faster than simple GPIO operations.

Now for the SPI configuration part. Assuming you know how to interpret timing diagrams and
understand device datasheets, SPI configuration should not be a problem. Here in the case of
MAX7219, we have configured the SPI port as to send MSB first, we have also selected a fast peripheral
clock, we have made the STM8 SPI act like a master with proper SPI mode and we have set the sort of

duplex. The last two parameters are not important as we are not using hardware slave select option
and CRC feature.

void SPI_setup(void)
{

SPI_Delnit();

SPL_nit(SPI_FIRSTBIT_MSB,
SPI_BAUDRATEPRESCALER_2,
SPI_MODE_MASTER,
SPI_CLOCKPOLARITY_HIGH,
SPI_CLOCKPHASE_1EDGE,
SPI_DATADIRECTION_1LINE_TX,
SPI_NSS_SOFT,
0x00);

SPI_Cmd(ENABLE);

The timing diagram of MAX7219 suggests that CS should be low in order for MAX7219 to receive data.

(oL =—tgH |
| | |
| I |
| |

- TODATDED -~ DO

DOUT >< oo >< ><

Then it suggests that when idle, clock must be high, data transfer is done on every rising edge of the
clock. All these are what required for setting up the SPI hardware.

void MAX72xx_write(unsigned char address, unsigned char value)

{

while(SPI_GetFlagStatus(SPI_FLAG_BSY));
GPIO_WriteLow(CS_port, CS_pin);

SPI_SendData(address);
while(!SPI_GetFlagStatus(SPI_FLAG_TXE));

SPI_SendData(value);
while(ISPI_GetFlagStatus(SPI_FLAG_TXE));

GPIO_WriteHigh(CS_port, CS_pin);

Before sending data to MAX7219, we must check if the SPI hardware is busy for some reason. We set
CS low by setting STM8'’s slave select pin (PC4) low. Then we send address and data. Every time we
send something we must wait until it has completely been sent out. Finally, we set CS high to latch
sent data. This function is what we will need to set MAX7219 things up and also to update displays.

The demo here is that of a MAX7219- based scrolling dot-matrix display. Letters of MICROARENA —
the name of my Facebook page is scrolled.

Demo

(:, 15
m““— dl\
==

il 000000
4 000000

P 'mu == iy
7 el [B | l"“: ""\t

Video link: https://youtu.be/O7mre-bzsGE

https://youtu.be/O7mre-bzsGE

Inter-Integrated Circuit (12C)

I12C is another popular form of on board synchronous serial communication developed by NXP. It just
uses two wires for communication and so it is also referred as Two Wire Interface (TWI). Just like SPI,
12C is widely used in interfacing real-time clocks (RTC), digital sensors, memory chips and so on. It is
as much as popular as SPI but compared to SPI it is slower and have some limitations. Up to 127 devices
can coexist in an 12C bus. In an 12C bus however it is not possible, by conventional means to interface
devices with same device IDs or devices with different logic voltage levels without logic level
converters and so on. Still however, 12C is very popular because these issues rarely arise and because
of its simplicity. Unlike other communications, there’s no pin/wire swapping as two wires connect
straight to the bus — SDA to SDA and SCL to SCL.

SDA
STM8 Microcontroller 12C-based Device
(Master) scL (Slave)

UUUUL

Just like SPI, an 12C bus must contain one master device (usually a microcontroller) and one or more
slaves. The master is solely responsible for generating clock signals and initiating communication.
Communication starts when master sends out a slave’s ID with read/write command. The slave reacts
to this command by processing the request from the master and sending out data.

To know more about 12C interface visit the following links:

e https://learn.mikroe.com/i2c-everything-need-know/

e https://learn.sparkfun.com/tutorials/i2c

e http://www.ti.com/Isds/ti/interface/i2c-overview.page

e http://www.robot-electronics.co.uk/i2c-tutorial

e https://www.i2c-bus.org/i2c-bus/

e http://i2c.info/

Other protocols like SMBus and 12S have similarities with 12C and so learning about 12C advances
learning these too.

https://learn.mikroe.com/i2c-everything-need-know/
https://learn.sparkfun.com/tutorials/i2c
http://www.ti.com/lsds/ti/interface/i2c-overview.page
http://www.robot-electronics.co.uk/i2c-tutorial
https://www.i2c-bus.org/i2c-bus/
http://i2c.info/

Hardware Connection

LIMNK_SWWIM

Yas D2l
08 Dl

[UoNg SWo-HSNE-AS] Td

Code Example

This code demonstrates how to interface BH1750 12C digital light sensor with STM8S003K3. A LCD is
used to display the light sensor’s output in lux.

main.c

#include "STM8S.h"
#include "BH1750.h"
#include "lcd.h"

void clock_setup(void);

void GPIO_setup(void);

void 12C_setup(void);

void led_print(unsigned char x_pos, unsigned char y_pos, unsigned int value);

void main()

unsigned int LX = 0x0000;

unsigned int tmp = 0x0000;

clock_setup();
GPIO_setup();
12C_setup();
LCD_init();
BH1750_init();

LCD_clear_home();
LCD_goto(0, 0);
LCD_putstr("STM8 12C");
LCD_goto(0, 1);
LCD_putstr("Lx");
delay_ms(10);

while(TRUE)
{

tmp = get_lux_value(cont_L_res_mode, 20);
if(tmp > 10)
{

LX = tmp;
}

else

LX = get_lux_value(cont_H_res_mode1, 140);
}

led_print(3, 1, LX);
delay_ms(200);

void clock_setup(void)
CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(DISABLE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV2);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER?2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

void GPIO_setup(void)
{

GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_4, GPIO_MODE_OUT_OD_HIZ_FAST);
GPIO_Init(GPIOB, GPIO_PIN_5, GPIO_MODE_OUT_OD_HIZ_FAST);

}

void 12C_setup(void)

12C_Delnit();

12C_Init(100000,
BH1750_addr,
12C_DUTYCYCLE_2,
12C_ACK_CURR,
12C_ADDMODE_T7BIT,
(CLK_GetClockFreq() / 1000000));

12C_Cmd(ENABLE);

!

void lcd_print(unsigned char x_pos, unsigned char y_pos, unsigned int value)
char tmp[5] = {0x20, 0x20, 0x20, 0x20, 0x20} ;

tmp[0] = ((value / 10000) + 0x30);
tmp[1] = (((value / 1000) % 10) + 0x30);
tmp[2] = (((value / 100) % 10) + 0x30);
tmp[3] = (((value / 10) % 10) + 0x30);
tmp[4] = ((value % 10) + 0x30);

LCD_goto(x_pos, y_pos);
LCD_putstr(tmp);
}

BH1750.h

#include "STM8S.h"

#define BH1750_addr 0x46
#define power_down 0x00
#define power_up 0x01
#define reset 0x07
#define cont_H_res_mode1 0x10
#define cont_H_res_mode2 0x11
#define cont_L_res_mode 0x13
#define one_time_H_res_mode1 0x20
#define one_time_H_res_mode?2 0x21
#define one_time_L_res_mode 0x23

void BH1750_init(void);

void BH1750_write(unsigned char cmd);

unsigned int BH1750_read_word(void);

unsigned int get_lux_value(unsigned char mode, unsigned int delay_time);

BH1750.c

#include "BH1750.h"

void BH1750_init(void)

delay_ms(10);
BH1750_write(power_down);
}

void BH1750_write(unsigned char cmd)

{
12C_GenerateSTART(ENABLE);

while(12C_CheckEvent(I2C_EVENT_MASTER_MODE_SELECT));

12C_Send7bitAddress(BH1750_addr, [2C_DIRECTION_TX);
while(!12C_CheckEvent(I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

12C_SendData(cmd);
while(!12C_CheckEvent(12C_EVENT_MASTER_BYTE_TRANSMITTED));

12C_GenerateSTOP(ENABLE);

unsigned int BH1750_read_word(void)
{

unsigned long value = 0x0000;
unsigned char num_of _bytes = 0x02;
unsigned char bytes[2] = {0x00, 0x00};

while(I2C_GetFlagStatus(I2C_FLAG_BUSBUSY));

12C_GenerateSTART(ENABLE);
while(12C_CheckEvent(I2C_EVENT_MASTER_MODE_SELECT));

12C_Send7bitAddress(BH1750_addr, I2C_DIRECTION_RX);
while(12C_CheckEvent(12C_EVENT_MASTER_RECEIVER_MODE_SELECTED));

while(num_of_bytes)
if(12C_CheckEvent(I2C_EVENT_MASTER_BYTE_RECEIVED))
if(num_of_bytes == 0)
{

12C_AcknowledgeConfig(I2C_ACK_NONE);
12C_GenerateSTOP(ENABLE);

}

bytes[(num_of_bytes - 1)] = 12C_ReceiveData();
num_of_bytes--;
}
},.

value = ((bytes[1] << 8) | bytes[0]);

return value;

}

unsigned int get_lux_value(unsigned char mode, unsigned int delay_time)

unsigned long lux_value = 0x00;
unsigned char dly = 0x00;
unsigned char s = 0x08;

while(s)

{
BH1750_write(power_up);
BH1750_write(mode);
lux_value += BH1750_read_word();
for(dly = 0; dly < delay_time; dly += 1)
{

delay_ms(1);

BH1750_write(power_down);
§-

lux_value >>= 3;

return ((unsigned int)lux_value);

Explanation

Firstly both the CPU and peripheral clocks are set. Note the CPU is slower than last few examples. This
has no significance.

CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIVS);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV2);

dK_Periphera/CIockConﬁg(CLK_PERIPHERAL_I2C, ENABLE);

I12C I/Os are set as open drain outputs because they have external pull-up resistors that terminate the
bus I/Os to VDD lines. SCL pin is always an output from host microcontroller’s end however SDA pin’s
direction varies with reading and writing operations. This is automatically done by the 12C hardware.

GPIO_Delnit(GPIOB);
GPIO_Init(GPIOB, GPIO_PIN_4, GPIO_MODE_OUT_OD_HIZ_FAST);
GPIO_Init(GPIOB, GPIO_PIN_5, GPIO_MODE_OUT_OD_HIZ_FAST);

I12C setup has many parameters to set, firstly the 12C bus clock speed, then its own ID, clock duty
cycle, address mode, acknowledgement type and clock speed of the peripheral. Here the own ID and
slave ID are both set same because we are not using our STMS8 as a slave. It doesn’t matter. You can
also set something else.

void 12C_setup(void)
{

12C_Delnit();
12C_Init(100000,
BH1750_addr,
12C_DUTYCYCLE 2,
12C_ACK_CURR,
12C_ADDMODE_7BIT,
(CLK_GetClockFreg() / 1000000));
12C_Cmd(ENABLE);

}

If you have used compilers with built-in 12C library before then you may get some hiccups studying
the following part. This is because those built-in libraries accomplish many tasks in the background
that you never felt necessary. Flags and acknowledgments are such stuffs that are mostly
automatically dealt by the compiler and ignore by most users. Personally, | had to struggle with these
before settling this code. Another big difference is fact that the SPL’s functions, their operations and
nomenclatures for 12C are different than most 12C libraries one has seen before. Lastly, 12C examples
with STM’s SPL on the internet are rare and most of them demonstrate 12C example with 24 series
EEPROMs only. | wanted to do something different and so | used BH1750 I12C digital sensor instead of
repeating another EEPROM example.

unsigned int BH1750_read_word(void)

{
unsigned long value = 0x0000;

unsigned char num_of_bytes = 0x02;
unsigned char bytes[2] = {0x00, 0x00j;

while(I2C_GetFlagStatus(12C_FLAG_BUSBUSY));

[2C_GenerateSTART(ENABLE);
while(!12C_CheckEvent(I2C_EVENT_MASTER_MODE_SELECT));

12C_Send7bitAddress(BH1750_addr, 12C_DIRECTION_RX);
while(!12C_CheckEvent(I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));

while(num_of_bytes)
if(12C_CheckEvent(12C_EVENT_MASTER_BYTE_RECEIVED))
if(num_of _bytes == 0)
{

12C_AcknowledgeConfig(12C_ACK_NONE);
12C_Generate STOP(ENABLE);

}

bytes[(num_of_bytes - 1)] = 12C_ReceiveData();
num_of_bytes--;
}
}’.

value = ((bytes[1] << 8) | bytes[0]);

return value;

}

As with SPI, we need to check first if I2C hardware is free. We, then, initiate a 12C start condition and
check master/slave mode selection. Next, we send out slave device’s ID or address with read
command, signalling that we wish to read from the slave. Again, a flag is checked before continuing.
Here the sensor gives 16-bit light output data and so we need to extract two 8-bit data values. This is
done in the while loop. At the end of data extraction process, we must generate stop as well as take
care of acknowledgement. Finally, the two bytes are joined to form a word value representing light

output.

The following function simplifies the task of determining lux value from the sensor. It selects mode of
operation and latency. We will call this function in the main loop to extract average light value in lux.

unsigned int get_lux_value(unsigned char mode, unsigned int delay_time)
{

unsigned long lux_value = 0x00;

unsigned char dly = 0x00;

unsigned char s = 0x08;

while(s)

{
BH1750_write(power_up);
BH1750_write(mode);
lux_value += BH1750_read_word();
for(dly = 0; dly < delay_time; dly += 1)
{

delay_ms(1);

BH1750_write(power_down);

s
}

lux_value >>= 3;

return ((unsigned int)lux_value);

}

¥ .

i -,L ..|n -n!L
2
| . wlle H“" Sl %
- a4l [—t =
‘“\"‘L‘ ‘-‘E ;"ﬁ- Yy
LU S-S
i -(..u."“'-m’ “l‘ "s "'1) "'“ !
- ity ool e

I -l-' :xm :M .IIII ﬁ"

r“ o 114 _,"ll 4 el " 2 &
[™ = ., - T
-|m. [b DT U) s oy W W T‘ fu 1 ‘“
T e L < = B
Pl iy LY Lt 122449
w1 I P |8 Sl Sl - m-n LA

(TR -
" i
R TR UTTREL B 1

D Ak 10 LA, 415 I FA PN T TIPS T L)
=| ™ ‘llll ‘Il e ‘I » ..,_v 01";|\w1 :'
11D 1 ' |.‘ R TWT
et 2 Lb
- —_
ULy e

i
T 3

Video link: https://youtu.be/bpwkilRCOXU

https://youtu.be/bpwki1RCOXU

Some Useful Tips

When using a new compiler, | evaluate some certain things. For instance, how do | include my own
written library files, interrupt management, what conventions | must follow and what dos and don’ts
must be observed.

Creation & Addition of libraries

At some point in working with any microcontroller, you’ll need two basic libraries more than anything
else. These are LCD and delay libraries. LCDs are great tools for quickly projecting or presenting data
apart from debugging a code with a debugger. Similarly, time-wasting delay loops help us slow down
things at our liking. Humans are not as fast as machines. Delays can be avoided in many novel ways
but delays keep things simple and so are necessities in some areas.

The Standard Peripheral Library only provides libraries for hardware peripherals and surely not for
anything else. It is also practically impossible to provide library for all hardware on available on the
planet. Thus, whenever when we will be needing new hardware integrations with STM8s, we will have
to code and tag our libraries with our projects. So how can we do so?

Earlier in this article | discussed about alphanumerical LCDs and delays. If you check the datasheet of
such LCDs, you’ll find initialization sequences in some while in others you may also find ready-made
codes. These sequences are needed to be translated in code just like what we do with 12C or SPI-based
devices. Shown below is such an example:

EXAMPLE FOR THE MODULE WITH 5 ¥ 7 Character Format Under 4-Bit Data Transfer

Flow Chart
POWER O
l‘-_' 15 mSY
x| A
EED E
T A ms E
| |5
3 (HEX) |.’
=1] . N
ol { E Hax Cade | [p, |:|1,5|1:p$ ojo, :.E"SA o) Instructions
3 (HEX) Q +
HME| |€| (| 2Hex) [0 0 1 0
— N L # Funclion Sel
[+ : ————+ 4 bit Data Langth
=-lﬂu3{| = B (Hax) 1000
| | ._l_ — 1 s Z2Line
s |—* 5= 7 Dot Format
| [12)| O(Hex) |2 0 0 @
& (Hax) 0110
\ L - + Entry Moda Set
- [- # Increment
TS L : + Mo Shift
& [HEX) | [3)| O(Hex) |0 0 O @
! E [Hex) | _ i1 1o
) L
1 | [Display ONOFF Control
21 L) ! + Display ON
e + Cursor ON
EWHEX) | +———» Blink OFF
=40 S -
. 4 | OHex) |0 00 0
_O(HEX)] itHex) [00 @1
=TES L = # Display Clear
IEEET (5] | BiHex) |1 0 0 @
=164 ms 0 {Hex) _ 0000
- -—;i':—o DD AAM Addriss Sil
-FND QF —* 151 Dugit)
INITIALIZATION
8 [(HEX) \I
Z1eS sl
O(HEX) ||

g

= 40p5

Creating new libraries is simple. Just need to follow the following steps:

There should be a header file and a source file for every new module. For example, lcd.h and
Icd.c.

Every header file should start with the inclusion of stm8s.h header file (#include "stm8s.h"). This
header is needed because it allows the access to the internal hardware modules available in
a STMS8 micro. For example, we will need access to GPIOs to develop our LCD library.

A good practice is that the header files only contain function prototypes, definitions,
constants, enumerations and global variables.

The corresponding source file must only include its header file in beginning.
The source file should contain the body of codes for all functions declared in the header file.

When one library is dependent on the functions of another’s, the one that will be required in
the new library must be included first. For example, we will need delay library in coding the
LCD library because there are delay_ms functions in some parts of the library and so delay
library should be included first. This should be the systematic order:

#include “stm8s_delay.h”
#include “lcd.h”

You can include these files at the bottom part of the stm8s_conf.h header file complying with
right precedence as shown below:

USE_FULL_A

Alternatively, you can add them after the first line #include “stm8s.h” in your main source
code.

Peripheral Clock Configurations

In most codes revealed so far, | made clock configurations every time. The reasons behind so are

e Selection of right clock source.

o Adjustment of peripheral and system clocks as per requirement. Again, it is mainly intended

to balance off both power consumption and overall performance.

e Disabling any unused hardware. This reduces power consumption and help us avoid certain

hardware conflicts.

void clock_setup(void)

{
CLK_Delnit();

CLK_HSECMJ(DISABLE);

CLK_LSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_LSIRDY) == FALSE);
CLK_HSICmd(ENABLE);
while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, ENABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERZ2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER4, DISABLE);

The following lines select clock sources:

CLK_Delnit();

CLK_HSECmd(DISABLE);
CLK_LSICmd(ENABLE);

while(CLK_GetFlagStatus(CLK_FLAG_LSIRDY) == FALSE);
CLK_HSICmd(ENABLE);

while(CLK_GetFlagStatus(CLK_FLAG_HSIRDY) == FALSE);

What these lines do are enabling/disabling clock sources and wait for the sources to stabilize.

Then the following lines select clock prescalers and switching:

CLK_ClockSwitchCmd(ENABLE);
CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1);
CLK_SYSCLKConfig(CLK_PRESCALER_CPUDIV1);

CLK_ClockSwitchConfig(CLK_SWITCHMODE_AUTO, CLK_SOURCE_HSI,
DISABLE, CLK_CURRENTCLOCKSTATE_ENABLE);

Finally, the last segment enables/disables peripheral clocks:

CLK_PeripheralClockConfig(CLK_PERIPHERAL_SPI, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_I2C, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_ADC, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_AWU, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_UART1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER1, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMER2, DISABLE);
CLK_PeripheralClockConfig(CLK_PERIPHERAL_TIMERA4, DISABLE);

This segment is very important and should always be rechecked. Different chips have different internal
hardware peripheral and so this segment will be different. For instance, STM8S105 has no UART1
module but it has UART2 instead. Research which hardware are available in your target micro and
then code this segment. | ended up with several wasted hours of finding trouble in various cases only
to find that | didn’t enable the required hardware.

Configuring Similar Stuffs Quickly

Sometimes you may end up doing the same stuff over and over again while you could have done it
simply with one or two lines of code. For example, in the LCD library, the GPIOs that connect with the
LCD share the same configurations. All are fast push-pull outputs.

GPIO_Init(LCD_PORT, LCD_RS, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_EN, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DB4, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LCD_PORT, LCD_DBS5, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(L.CD_PORT, LCD_DB6, GPIO_MODE_OUT_PP_HIGH_FAST);
GPIO_Init(LlCD_PORT, LCD_DB7, GPIO_MODE_OUT_PP_HIGH_FAST);

This can be done in a more simplistic manner with just one line of code:

GPIO_nit(LCD_PORT, ((GPIO_Pin_TypeDef)(LCD_RS | LCD_EN | LCD_DB4 | LCD_DB5 | LCD_DB6 | LCD_DBY7)),
GPIO_MODE_OUT_PP_HIGH_FAST);

As you can see it is just a bunch of logical OR operation. The same method is applicable for other
peripherals that share the same initialization function.

Some Stuffs About Cosmic C and SPL
e Functions, variables and definitions in Cosmic C are case sensitive.

e Functions with no arguments must not have empty argument areas. For example, you
cannot write:

void setup ();
You should write it as:

void setup (void);

Definitions and constants can be declared as with any C compiler.

Wherever there are flags, you need to be careful. You should check and clear flags even if it is
cleared by hardware. For instance, when reading ADC, the ADC End-Of-Conversion (EOC) flag
is automatically cleared but still in the code you should check and clear it.

ADC1_ClearFlag(ADC1_FLAG_EOC);

Flags are so important that unless you check and clear them appropriately, you may not get
the right result from your code. Personally, | didn’t care much until | got myself into trouble.

You can mix assembly codes with your C code to enhance performance and optimization.
However, you need to have sound knowledge of the assembly instructions. This is a rare
requirement. The delay library, for instance, uses no operation assembly instruction to
achieve delays. This is written as shown:

_asm ("nop");
Empty loops are ignored by the compiler as a part of code optimization.

Long ago, Atmel (now Microchip) published a document regarding ways to efficiently optimize
C coding. This document holds true for most microcontrollers. For example, in that document
it is stated that a decrementing do-while loop is much more faster and code efficient than an
incrementing do-while loop. You can apply the methods presented there and other similar
tricks with STM8 microcontrollers too. The document can be found here:
http://www.atmel.com/images/doc8453.pdf

Though | don’t feel it as a necessity and don’t recommend it, you can avoid using the SPL and
still code by raw register level access. For example, you can blink a LED with the following
code:

#include "stm8s.h"

void main (void)

{
GPIOD->DDR |= 0x01;

GPIOD->CR1 |= 0x01;
for;)

GPIOD->ODR "= (1 << 0);
delay_ms(100);
h
}

As you can see it is both tedious and meaningless unless you comment every single line.

Don’t mess with configuration (fuse) bits unless needed. Most of the times you will never have
to deal with them. AFRs are used when remapping is needed or to enable special GPIO
functionality. These will be of most importance.

http://www.atmel.com/images/doc8453.pdf

e Bitwise and logic operations are useful. Not only they are fast, they just deal with the
designated bits only. SPL has support for such operations but it is still better to know them.

Here are some common operations:

#define bit_set(reg, bit_val) reg |= (1 << bit_val) //For setting a bit of a register

#define bit_clr(reg, bit_val) reg &= (~(1 << bit_val)) //For clearing a bit of a register

#define bit_tgl(reg, bit_val) reg M= (1 << bit_val) /[For toggling a bit of a register

#define get _bit(reg, bit_val) (reg & (1 << bit_val)) //For extracting the bit state of a register

#define get_reg(reg, msk) (reg & msk) /[For extracting the states of masked bits of a register

Unlocking a Locked STM8 Chip

If you have accidentally locked a STM8 chip by setting the Readout Protection configuration bit and
no longer able to use it, you can unlock it easily.

When you lock a chip, the programmer interface will give you a warning notification. If you retry to
reprogram/erase a locked chip you’ll get an error like this:

% Light Prograrmmer X

FEh Settings <) Memory Areas £# OPTION BYTE %@ Program

Summary & Qutputs

Erase (if feasible) A
Program

Werify

Initialization ..
> PROGRAM MEMORY < [

done

PROGRAM MEMORY:
= Erase not feasible
> Programming
Cut Version and Revision of device: 1.2
Emor : The device is protected
Waming : Operation aborted

OK Cancel Help

No matter what you do, you won’t be able to use it.

To unlock, go to the light programmer interface of STVD and check the Unlock Device checkbox as
shown below:

+#% Light Programmer X

Egh Settings) Memory Areas 2 OPTION BYTE @ Program

Tanget Device
STME5003F3
Hardware
Board: Ports: Programming Mode:
Eg ST-LINK ~ USE ~ SWIM ~
Protections:

if feasible...
(®) Erase before Programming
(7 Blank Check before Program.

Unlock Device

Run STVP

Cancel Help

Also select Erase before Programming radio button because it is highly likely that your target chip is
not empty. Now once you retry to reprogram, it will get unlocked.

Mastering C Language

You need not to be a C whiz to work with microcontrollers but certain things will surely help you to
resolve some critical problems with simple codes. You must check supported data types whenever
you begin working in a new development environment and should always use unsigned-signed
designations to avoid unnecessary mistakes. Likewise, variable size is also important. Pointer,
structures, unions and arrays are helpful features of C-language. You must learn how to use and apply
them successfully. Without these you can still work but things will look really dirty. When coding for a
new work, you must try to settle what you wish from your system and how should it behave. There
should be an organized workflow and thereby your code will automatically be formulated in a state-
of-machine algorithm or as a real-time system. You must try to avoid delays and loops wherever
possible. Try to avoid polling and use interrupt-based systems. This will make your device behave in
real-time with zero latency. However, you must be careful in handling interrupts because interrupts
within interrupts will cause your system to crash miserably. Functions make things modular and thus
easy to modify or debug. Repeated tasks should be placed in functions. A blinking LED code may look
simple and stupid but sometimes very useful for testing stuffs. Some basic knowledge on mathematics
and algorithms are also requirements for becoming a good embedded-system specialist.

Epilogue

In the end, | would like to share that my tiny raw-level knowledge and experiences with STM32s
(http://embedded-lab.com/blog/stm32-tutorials/) earlier paid off handsomely. Due to that | was able
to compiler this article decently and quickly. Personally, | feel that whosoever knows STM8 micros well
will master STM32s and vice-versa because except the cores all hardware in both architectures are
not just similar but same sometimes. This is for the first time | have admired STM’s SPL. My
experiences with STM32 SPL was not well as so | decided to go on my own. However, this time things
were different. Things were joyful and less difficult.

| would like to thank a few people who influenced me in composing this article:

e Firstly, my friends and acquaintances. | wanted to help them out and that drove me to dig
things deep.

e Mr. Ben Ryves (benryves.com/tutorials/stm8s-discovery/).
Though his methods are different than mine, his article guided me a lot in the beginning. It is
perhaps the most popular site for tutorials on STM8s and well organized. He used STM8S5105
Discovery.

e Mark Stevens (http://blog.mark-stevens.co.uk)
His tutorials on STM8 are not based on SPL. He showed stuffs with raw-level register access
and with IAR compiler. Still his blog is informative.

e http://www.emcu.it/. This Italian site was helpful in getting some early info.

e STMicroelectronics team for releasing the STM8CubeMX during my writeup.

Cosmic team for freeing up their C compiler.

| spent nearly three months straight putting together all these things and at present, | must say that |
have great expectations from STM8 microcontrollers.

Happy coding.

Author: Shawon M. Shahryiar
https://www.facebook.com/qroups/microarena
https://www.facebook.com/MicroArena 24.04.2017

http://embedded-lab.com/blog/stm32-tutorials/
http://benryves.com/tutorials/stm8s-discovery/
http://blog.mark-stevens.co.uk/
http://www.emcu.it/
https://www.facebook.com/groups/microarena/
https://www.facebook.com/MicroArena?ref=hl

