Tinkering TI MSP430F5529

Timer Interrupt – TA1

Timers become more useful when used with interrupts. At fixed intervals, interrupts occur and this process allows us to perform tasks that need periodic update. One common use of timer interrupt is to drive multiple seven segment displays. A timer is coded in such a way that its overflow interrupt triggers every millisecond. During this time, one seven segment display is updated. Since one millisecond interval is a very short duration for human vision to notice, we can update several seven segment displays in a matter of few milliseconds and our eyes will see that all displays have been simultaneously updated.

Code Example

#include "driverlib.h"
#include "delay.h"

#define GATE_HIGH                   GPIO_setOutputHighOnPin(GPIO_PORT_P8, GPIO_PIN2)
#define GATE_LOW                    GPIO_setOutputLowOnPin(GPIO_PORT_P8, GPIO_PIN2)

#define CLK_HIGH                    GPIO_setOutputHighOnPin(GPIO_PORT_P8, GPIO_PIN1)
#define CLK_LOW                     GPIO_setOutputLowOnPin(GPIO_PORT_P8, GPIO_PIN1)

#define A_HIGH                      GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN6)
#define A_LOW                       GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6)

#define B_HIGH                      GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN0)
#define B_LOW                       GPIO_setOutputLowOnPin(GPIO_PORT_P4, GPIO_PIN0)

#define C_HIGH                      GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN3)
#define C_LOW                       GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN3)

#define D_HIGH                      GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN7)
#define D_LOW                       GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN7)

#define SW                          GPIO_getInputPinValue(GPIO_PORT_P3, GPIO_PIN1)

#define top_seg                     4
#define bot_seg                     0

#define HIGH                        true
#define LOW                         false

const unsigned char num[0x0A] = {0xED, 0x21, 0x8F, 0xAB, 0x63, 0xEA, 0xEE, 0xA1, 0xEF, 0xEB};
unsigned char data_values[0x09] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

unsigned char n = 0x00;
unsigned char SW_in = 0x00;

void clock_init(void);
void GPIO_init(void);
void timer_T1A1_init(void);
void write_74HC164(register unsigned char value);
void write_74HC145(register unsigned char channel);
void show_LEDs(unsigned char LED1_state, unsigned char LED2_state, unsigned char LED3_state, unsigned char LED4_state);
void show_numbers(signed int value, unsigned char pos);

#pragma vector = TIMER1_A1_VECTOR
__interrupt void Timer_A_ISR(void)
{
    Timer_A_clearTimerInterrupt(TIMER_A1_BASE);

    write_74HC164(data_values[n]);
    write_74HC145(n);

    n++;

    if(n > 9)
    {
      n = 0;
    }
}

void main(void)
{
    signed int i = 0;
    signed int j = 9999;

    WDT_A_hold(WDT_A_BASE);

    clock_init();
    GPIO_init();
    timer_T1A1_init();

    while(true)
    {
        switch(SW_in)
        {
             case 1:
             {
                 show_LEDs(1, 0, 0, 0);
                 break;
             }

             case 2:
             {
                 show_LEDs(0, 1, 0, 0);
                 break;
             }

             case 3:
             {
                 show_LEDs(0, 0, 1, 0);
                 break;
             }

             case 4:
             {
                 show_LEDs(0, 0, 0, 1);
                 break;
             }
        }

        SW_in = 0x00;

        i++;
        j--;

        if(i > 9999)
        {
            i = 0;
            j = 9999;
        }

        show_numbers(i, bot_seg);
        show_numbers(j, top_seg);

        delay_ms(100);
        show_LEDs(0, 0, 0, 0);
    };
}

void clock_init(void)
{
    PMM_setVCore(PMM_CORE_LEVEL_2);

    GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5,
                                               (GPIO_PIN4 | GPIO_PIN2));

    GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5,
                                                (GPIO_PIN5 | GPIO_PIN3));

    UCS_setExternalClockSource(XT1_FREQ,
                               XT2_FREQ);

    UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ);

    UCS_turnOnLFXT1(UCS_XT1_DRIVE_0,
                    UCS_XCAP_3);

    UCS_initClockSignal(UCS_MCLK,
                        UCS_XT2CLK_SELECT,
                        UCS_CLOCK_DIVIDER_1);

    UCS_initClockSignal(UCS_SMCLK,
                        UCS_XT1CLK_SELECT,
                        UCS_CLOCK_DIVIDER_1);

    UCS_initClockSignal(UCS_ACLK,
                        UCS_XT2CLK_SELECT,
                        UCS_CLOCK_DIVIDER_1);
}

void GPIO_init(void)
{
    GPIO_setAsInputPin(GPIO_PORT_P3,
                       GPIO_PIN1);

    GPIO_setAsOutputPin(GPIO_PORT_P2,
                        GPIO_PIN3);
    GPIO_setDriveStrength(GPIO_PORT_P2,
                          GPIO_PIN3,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P2,
                        GPIO_PIN6);

    GPIO_setDriveStrength(GPIO_PORT_P2,
                          GPIO_PIN6,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P3,
                        GPIO_PIN7);

    GPIO_setDriveStrength(GPIO_PORT_P3,
                          GPIO_PIN7,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P4,
                        GPIO_PIN0);

    GPIO_setDriveStrength(GPIO_PORT_P4,
                          GPIO_PIN0,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P8,
                        GPIO_PIN1);

    GPIO_setDriveStrength(GPIO_PORT_P8,
                          GPIO_PIN1,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P8,
                        GPIO_PIN2);

    GPIO_setDriveStrength(GPIO_PORT_P8,
                          GPIO_PIN2,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);
}

void timer_T1A1_init(void)
{
    Timer_A_initUpModeParam UpModeParam = {0};

    UpModeParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;
    UpModeParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;
    UpModeParam.timerPeriod = 9999;
    UpModeParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;
    UpModeParam.captureCompareInterruptEnable_CCR0_CCIE =                                                                      
                                      TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE;
    UpModeParam.timerClear = TIMER_A_DO_CLEAR;
    UpModeParam.startTimer = true;

    Timer_A_initUpMode(TIMER_A1_BASE,
                       &UpModeParam);

    Timer_A_startCounter(TIMER_A1_BASE,
                         TIMER_A_UP_MODE);

    __enable_interrupt();
}

void write_74HC164(register unsigned char value)
{
  register unsigned char s = 0x08;

  while(s > 0)
  {
        if((value & 0x80) != 0x00)
        {
            GATE_HIGH;
        }
        else
        {
            GATE_LOW;
        }

        CLK_HIGH;
        CLK_LOW;

        value <= 0) && (value  9) && (value  99) && (value  999) && (value <= 9999))
  {
    ch = (value % 10);
    data_values[(0 + pos)] = num[ch];
    ch = ((value / 10) % 10);
    data_values[(1 + pos)] = num[ch];
    ch = ((value / 100) % 10);
    data_values[(2 + pos)] = num[ch];
    ch = (value / 1000);
    data_values[(3 + pos)] = num[ch];
  }
}

Hardware Setup

Explanation

Timer interrupt is best understood by using it to scan multiple seven segment displays and buttons. This time timer TA1 is used.

void timer_T1A1_init(void)
{
    Timer_A_initUpModeParam UpModeParam = {0};

    UpModeParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;
    UpModeParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;
    UpModeParam.timerPeriod = 9999;
    UpModeParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;
    UpModeParam.captureCompareInterruptEnable_CCR0_CCIE =        
                                          TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE;
    UpModeParam.timerClear = TIMER_A_DO_CLEAR;
    UpModeParam.startTimer = true;

    Timer_A_initUpMode(TIMER_A1_BASE, &UpModeParam);

    Timer_A_startCounter(TIMER_A1_BASE, TIMER_A_UP_MODE);

    __enable_interrupt();
}

Timer TA1 is clocked with ACLK which in turn is being feed with 4MHz XT2CLK source. No divider is used at any stage and so, the timer will tick every 0.25µs.

UCS_initClockSignal(UCS_ACLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);

We wish to have a time period of 2.5 ms and thus, here we will be using the timer in up mode with a top value of 9999, i.e. 10000 counts. Up mode is similar to previously seen continuous mode. The only difference is the fact that in continuous mode the top value of a timer is fixed at 65535 count while in up mode, the top value can be set to anything between 0 to 65535. The timer will count from 0 to 9999, i.e. there are 10000 ticks before timer overflow. Since one tick is 0.25 µs, 10000 ticks equal 2.5 ms (0.25 µs x 10000 = 2.5 ms).

We will only need timer interrupt. We won’t be using any capture-compare interrupt and so we have to disable it. As with previous examples we have to clear any past setting although there is none.

After setting up the timer’s settings, we will just start it and enable global interrupt as to begin time count.

Now let’s see what’s being done inside the timer interrupt? According to the schematic and objective of this project, we need to update all seven segment displays and read the 4-bit keypad so quickly as if everything appears to work in real time and without any lag.

#pragma vector = TIMER1_A1_VECTOR
__interrupt void Timer_A_ISR(void)
{
    Timer_A_clearTimerInterrupt(TIMER_A1_BASE);

    write_74HC164(data_values[n]);
    write_74HC145(n);

    n++;

    if(n > 9)
    {
      n = 0;
    }
}

Inside timer interrupt subroutine, both logic ICs are updated. Firstly, the number to be displayed is sent to the 74HC164 IC and then the seven-segment display to show the number is updated by writing the 74HC145 IC. At every interrupt, one seven segment display is updated. There are 8 such displays and so it takes about 20 ms to update all of these displays. During this time the keypad is also scanned in the main loop. With different key presses, different LEDs light up.

switch(SW_in)
{
       case 1:
        {
            show_LEDs(1, 0, 0, 0);
            break;
        }
        case 2:
        {
             show_LEDs(0, 1, 0, 0);
             break;
        }
  case 3:
        {
             show_LEDs(0, 0, 1, 0);
             break;
        }
  case 4:
         {
             show_LEDs(0, 0, 0, 1);
             break;
         }
}

SW_in = 0x00;

Demo

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Related Posts

14 comments

Leave a Reply to Cristian Cancel reply

Your email address will not be published. Required fields are marked *