Tinkering TI MSP430F5529

Real Time Clock – RTC_A

As stated before, RTC_A is mainly intended for time keeping and, in this demo, we will see how make a real-time clock with the RTC_A module.

Let’s see some insights of RTC_A module. Firstly, we can see that the RTC_A module can be feed with either SMCLK or ACLK. Since SMCLK has other important uses, it is better to use ACLK for RTC_A. ACLK should have a frequency of 32.768 kHz and to achieve that it is better to use dedicated external crystal or TCXO. The RTC’s counter RTCBCD can be then clocked directly by clock signals or via RTxPS registers. The desired tick period for RTC is obviously 1 Hz. Selectable either in BCD or hexadecimal format, the RTC_A calendar block gives time and date. A cool feature is the fact that internal algorithm takes care of leap-years from the year 1901 AD to 2099 AD. It is also possible to set calendar alarms but coder has to be careful because out-of-range or invalid date-time settings may result in unpredictable behavior. Lastly, there are several interrupts for various timer events.

Code Example

#include "driverlib.h"
#include "delay.h"
#include "lcd.h"
#include "lcd_print.h"

Calendar current_Time;
unsigned char update_time = false;

void clock_init(void);
void GPIO_init(void);
void RTC_init(void);
void display_year(unsigned char x_pos, unsigned char y_pos, unsigned int value);
void display_time_date(unsigned char x_pos, unsigned char y_pos, unsigned char value);
unsigned int change_value(unsigned char x_pos, unsigned char y_pos, signed int value, signed int value_min, signed int value_max, unsigned char value_type);
void set_RTC(void);

#pragma vector = RTC_VECTOR
__interrupt void RTC_A_ISR (void)
{
    switch(__even_in_range(RTCIV, 16))
    {
        case 0: break;  //No interrupts
        case 2:         //RTCRDYIFG
        {
            GPIO_toggleOutputOnPin(GPIO_PORT_P4,
                                   GPIO_PIN7);

            current_Time = RTC_A_getCalendarTime(RTC_A_BASE);

            update_time = true;

            break;
        }
        case 4: break;  //RTCEVIFG
        case 6: break;  //RTCAIFG
        case 8: break;  //RT0PSIFG
        case 10: break; //RT1PSIFG
        case 12: break; //Reserved
        case 14: break; //Reserved
        case 16: break; //Reserved
        default: break;
    }
}

void main(void)
{
    WDT_A_hold(WDT_A_BASE);

    clock_init();
    GPIO_init();
    RTC_init();
    LCD_init();

    LCD_clear_home();

    LCD_goto(6, 0);
    LCD_putstr(":  :");

    LCD_goto(5, 1);
    LCD_putstr("/  /");

    while(1)
    {

        set_RTC();

         if(update_time)
         {
             display_time_date(4, 0, current_Time.Hours);
             display_time_date(7, 0, current_Time.Minutes);
             display_time_date(10, 0, current_Time.Seconds);
             display_time_date(3, 1, current_Time.DayOfMonth);
             display_time_date(6, 1, current_Time.Month);
             display_year(9, 1, current_Time.Year);
             update_time = 0;
         }
    };
}

void clock_init(void)
{
    PMM_setVCore(PMM_CORE_LEVEL_3);

    GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5,
                                               (GPIO_PIN4 | GPIO_PIN2));

    GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5,
                                                (GPIO_PIN5 | GPIO_PIN3));

    UCS_setExternalClockSource(XT1_FREQ,
                               XT2_FREQ);

    UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ);

    UCS_turnOnLFXT1(UCS_XT1_DRIVE_3,
                    UCS_XCAP_3);

    UCS_initClockSignal(UCS_FLLREF,
                        UCS_XT2CLK_SELECT,
                        UCS_CLOCK_DIVIDER_4);

    UCS_initFLLSettle(MCLK_KHZ,
                      MCLK_FLLREF_RATIO);

    UCS_initClockSignal(UCS_SMCLK,
                        UCS_XT2CLK_SELECT,
                        UCS_CLOCK_DIVIDER_2);

    UCS_initClockSignal(UCS_ACLK,
                        UCS_XT1CLK_SELECT,
                        UCS_CLOCK_DIVIDER_1);
}

void GPIO_init(void)
{
    GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1,
                                         GPIO_PIN1);

    GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P2,
                                         GPIO_PIN1);

    GPIO_setAsOutputPin(GPIO_PORT_P1,
                        GPIO_PIN0);

    GPIO_setDriveStrength(GPIO_PORT_P1,
                          GPIO_PIN0,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);

    GPIO_setAsOutputPin(GPIO_PORT_P4,
                        GPIO_PIN7);

    GPIO_setDriveStrength(GPIO_PORT_P4,
                          GPIO_PIN7,
                          GPIO_FULL_OUTPUT_DRIVE_STRENGTH);
}

void RTC_init(void)
{
    current_Time.Seconds = 30;
    current_Time.Minutes = 10;
    current_Time.Hours = 10;
    current_Time.DayOfWeek = 1;
    current_Time.DayOfMonth = 1;
    current_Time.Month = 1;
    current_Time.Year = 2000;

    RTC_A_initCalendar(RTC_A_BASE,
                       &current_Time,
                       RTC_A_FORMAT_BINARY);

    RTC_A_setCalendarEvent(RTC_A_BASE,
                           RTC_A_CALENDAREVENT_MINUTECHANGE);

    RTC_A_clearInterrupt(RTC_A_BASE,
                         (RTCRDYIFG | RTCTEVIFG | RTCAIFG));

    RTC_A_enableInterrupt(RTC_A_BASE,
                          (RTCRDYIE | RTCTEVIE | RTCAIE));

    RTC_A_startClock(RTC_A_BASE);

    __enable_interrupt();
}

void display_year(unsigned char x_pos, unsigned char y_pos, unsigned int value)
{
    unsigned char tmp = 0;

    tmp = (value / 100);
    display_time_date(x_pos, y_pos, tmp);
    tmp = (value % 100);
    display_time_date((x_pos + 2), y_pos, tmp);
}

void display_time_date(unsigned char x_pos, unsigned char y_pos, unsigned char value)
{
    unsigned char ch = 0;

    ch = (value / 10);
    LCD_goto(x_pos, y_pos);
    LCD_putchar((ch + 0x30));

    ch = (value % 10);
    LCD_goto((1 + x_pos), y_pos);
    LCD_putchar((ch + 0x30));
}

unsigned int change_value(unsigned char x_pos, unsigned char y_pos, signed int value, signed int value_min, signed int value_max, unsigned char value_type)
{
    while(1)
    {
        LCD_goto(x_pos, y_pos);

        switch(value_type)
        {
            case 1:
            {
                LCD_putstr("    ");
                break;
            }
            default:
            {
                LCD_putstr("  ");
                break;
            }
        }

        delay_ms(60);

        if(GPIO_getInputPinValue(GPIO_PORT_P1,
                                 GPIO_PIN1) == false)
        {
            value++;
        }

        if(value > value_max)
        {
            value = value_min;
        }

        switch(value_type)
        {
            case 1:
            {
                display_year(x_pos, y_pos, ((unsigned int)value));
                break;
            }
            default:
            {
                display_time_date(x_pos, y_pos, ((unsigned char)value));
                break;
            }
        }
        delay_ms(90);

        if(GPIO_getInputPinValue(GPIO_PORT_P2,
                                 GPIO_PIN1) == false)
        {
            while(GPIO_getInputPinValue(GPIO_PORT_P2,
                                        GPIO_PIN1) == false);

            delay_ms(200);
            return value;
        }
    };
}

void set_RTC(void)
{
    if(GPIO_getInputPinValue(GPIO_PORT_P2,
                             GPIO_PIN1) == false)
    {
        GPIO_setOutputHighOnPin(GPIO_PORT_P1,
                                GPIO_PIN0);

        while(GPIO_getInputPinValue(GPIO_PORT_P2,
                                    GPIO_PIN1) == false);

        RTC_A_disableInterrupt(RTC_A_BASE,
                               (RTCRDYIE | RTCTEVIE | RTCAIE));

        RTC_A_holdClock(RTC_A_BASE);

        __disable_interrupt();

        update_time = false;

        current_Time.Hours = change_value(4, 0, current_Time.Hours, 0, 23, 0);

        current_Time.Minutes = change_value(7, 0, current_Time.Minutes, 0, 59, 0);

        current_Time.Seconds = change_value(10, 0, current_Time.Seconds, 0, 59, 0);

        current_Time.DayOfMonth = change_value(3, 1, current_Time.DayOfMonth, 1, 31, 0);

        current_Time.Month = change_value(6, 1, current_Time.Month, 1, 12, 0);

        current_Time.Year = change_value(9, 1, current_Time.Year, 1970, 2099, 1);

        GPIO_setOutputLowOnPin(GPIO_PORT_P1,
                               GPIO_PIN0);

        RTC_A_initCalendar(RTC_A_BASE,
                           &current_Time,
                           RTC_A_FORMAT_BINARY);

        RTC_A_clearInterrupt(RTC_A_BASE,
                             (RTCRDYIFG | RTCTEVIFG | RTCAIFG));

        RTC_A_enableInterrupt(RTC_A_BASE,
                              (RTCRDYIE | RTCTEVIE | RTCAIE));

        RTC_A_startClock(RTC_A_BASE);

        __enable_interrupt();
    }
}

Hardware Setup

Explanation

Earlier I mentioned why we should use ACLK for RTC and so for that ground I used ACLK to drive the RTC_A module. On board external 32.768 kHz crystal is used for ACLK as it is better than any other source.

UCS_initClockSignal(UCS_ACLK, UCS_XT1CLK_SELECT, UCS_CLOCK_DIVIDER_1);

On-board LEDs and buttons are also used. P4.7 LED is used as second ticker while P1.0 LED is used as setting mode indicator. P1.1 button is used as a modifier button while P2.1 button acts as a set/enter button.

GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);
GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P2, GPIO_PIN1);

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7);

Now let’s see how the RTC is set up.

void RTC_init(void)
{
    current_Time.Seconds = 30;
    current_Time.Minutes = 10;
    current_Time.Hours = 10;
    current_Time.DayOfWeek = 1;
    current_Time.DayOfMonth = 1;
    current_Time.Month = 1;
    current_Time.Year = 2000;

    RTC_A_initCalendar(RTC_A_BASE, &current_Time, RTC_A_FORMAT_BINARY);

    RTC_A_setCalendarEvent(RTC_A_BASE, RTC_A_CALENDAREVENT_MINUTECHANGE);

    RTC_A_clearInterrupt(RTC_A_BASE, (RTCRDYIFG | RTCTEVIFG | RTCAIFG));

    RTC_A_enableInterrupt(RTC_A_BASE, (RTCRDYIE | RTCTEVIE | RTCAIE));

    RTC_A_startClock(RTC_A_BASE);

    __enable_interrupt();
}

We start by initializing and loading date-time parameters of our choosing in binary format. We chose binary format because in that way we can avoid unnecessary BCD-to-binary conversions. Finally, we enable required interrupts after clearing them and start the RTC.    

Inside the interrupt vector, we just check the RTCRDY interrupt flag and that’s because from here we will extract current RTC time info. Other interrupts, although enabled, are not needed as we are not using alarm and event features. 

#pragma vector = RTC_VECTOR
__interrupt void RTC_A_ISR (void)
{
    switch(__even_in_range(RTCIV, 16))
    {
        case 0: break;  //No interrupts
        case 2:         //RTCRDYIFG
        {
            GPIO_toggleOutputOnPin(GPIO_PORT_P4,
                                   GPIO_PIN7);

            current_Time = RTC_A_getCalendarTime(RTC_A_BASE);

            update_time = true;

            break;
        }
        case 4: break;  //RTCEVIFG
        case 6: break;  //RTCAIFG
        case 8: break;  //RT0PSIFG
        case 10: break; //RT1PSIFG
        case 12: break; //Reserved
        case 14: break; //Reserved
        case 16: break; //Reserved
        default: break;
    }
}

In the main loop, we can do two things, either we can set time or watch it. When setting date-time, the display only shows the date-time parameters we are setting. After setup up, the RTC module is reinitialized with new date and time. 

set_RTC();

if(update_time)
{
   display_time_date(4, 0, current_Time.Hours);
   display_time_date(7, 0, current_Time.Minutes);
   display_time_date(10, 0, current_Time.Seconds);
   display_time_date(3, 1, current_Time.DayOfMonth);
   display_time_date(6, 1, current_Time.Month);
   display_year(9, 1, current_Time.Year);
   update_time = 0;
}

Demo

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Related Posts

14 comments

Leave a Reply

Your email address will not be published. Required fields are marked *