Tinkering TI MSP430F5529

|
ADC12 Interrupt
ADC interrupt is as important as timer and communication interrupts. We can do other tasks while ADC is performing a conversion.
Code Example
#include "driverlib.h" #include "delay.h" #include "lcd.h" #include "lcd_print.h" unsigned long cnt = 0; void clock_init(void); void GPIO_init(void); void ADC12_init(void); #pragma vector = ADC12_VECTOR __interrupt void ADC12ISR (void) { switch (__even_in_range(ADC12IV, 34)) { case 0: break; //Vector 0: No interrupt case 2: break; //Vector 2: ADC overflow case 4: break; //Vector 4: ADC timing overflow case 6: //Vector 6: ADC12IFG0 { cnt = ADC12_A_getResults(ADC12_A_BASE, ADC12_A_MEMORY_0); break; } case 8: break; //Vector 8: ADC12IFG1 case 10: break; //Vector 10: ADC12IFG2 case 12: break; //Vector 12: ADC12IFG3 case 14: break; //Vector 14: ADC12IFG4 case 16: break; //Vector 16: ADC12IFG5 case 18: break; //Vector 18: ADC12IFG6 case 20: break; //Vector 20: ADC12IFG7 case 22: break; //Vector 22: ADC12IFG8 case 24: break; //Vector 24: ADC12IFG9 case 26: break; //Vector 26: ADC12IFG10 case 28: break; //Vector 28: ADC12IFG11 case 30: break; //Vector 30: ADC12IFG12 case 32: break; //Vector 32: ADC12IFG13 case 34: break; //Vector 34: ADC12IFG14 default: break; } } void main(void) { unsigned long volts = 0; WDT_A_hold(WDT_A_BASE); clock_init(); GPIO_init(); ADC12_init(); LCD_init(); LCD_clear_home(); LCD_goto(0, 0); LCD_putstr("ADC Count:"); LCD_goto(0, 1); LCD_putstr("Volts/mV :"); while(1) { volts = ((cnt * 3300) / 4095); print_I(11, 0, cnt); print_I(11, 1, volts); delay_ms(100); }; } void clock_init(void) { PMM_setVCore(PMM_CORE_LEVEL_3); GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5, (GPIO_PIN4 | GPIO_PIN2)); GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5, (GPIO_PIN5 | GPIO_PIN3)); UCS_setExternalClockSource(XT1_FREQ, XT2_FREQ); UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ); UCS_turnOnLFXT1(UCS_XT1_DRIVE_0, UCS_XCAP_3); UCS_initClockSignal(UCS_FLLREF, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_4); UCS_initFLLSettle(MCLK_KHZ, MCLK_FLLREF_RATIO); UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_2); UCS_initClockSignal(UCS_ACLK, UCS_XT1CLK_SELECT, UCS_CLOCK_DIVIDER_1); } void GPIO_init(void) { GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7); GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6, GPIO_PIN0); } void ADC12_init(void) { ADC12_A_configureMemoryParam configureMemoryParam = {0}; ADC12_A_init(ADC12_A_BASE, ADC12_A_SAMPLEHOLDSOURCE_SC, ADC12_A_CLOCKSOURCE_ACLK, ADC12_A_CLOCKDIVIDER_1); ADC12_A_setupSamplingTimer(ADC12_A_BASE, ADC12_A_CYCLEHOLD_768_CYCLES, ADC12_A_CYCLEHOLD_4_CYCLES, ADC12_A_MULTIPLESAMPLESENABLE); ADC12_A_setResolution(ADC12_A_BASE, ADC12_A_RESOLUTION_12BIT); configureMemoryParam.memoryBufferControlIndex = ADC12_A_MEMORY_0; configureMemoryParam.inputSourceSelect = ADC12_A_INPUT_A0; configureMemoryParam.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC; configureMemoryParam.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS; configureMemoryParam.endOfSequence = ADC12_A_NOTENDOFSEQUENCE; ADC12_A_configureMemory(ADC12_A_BASE, &configureMemoryParam); ADC12_A_clearInterrupt(ADC12_A_BASE, ADC12IFG0); ADC12_A_enableInterrupt(ADC12_A_BASE, ADC12IE0); __enable_interrupt(); ADC12_A_enable(ADC12_A_BASE); ADC12_A_startConversion(ADC12_A_BASE, ADC12_A_MEMORY_0, ADC12_A_REPEATED_SINGLECHANNEL); }
Hardware Setup

Explanation
This example is similar to the last one in many aspects. I won’t be going through all settings. I’ll only highlight the key differences.
This time an external ADC channel is used and so we have to initialize the alternative role of its pin.
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6, GPIO_PIN0);
In the ADC12 initialization, the external input pin or the ADC channel’s physical pin is set after its GPIO initialization. Unlike the last ADC example in which we used internal 1.5V reference source, the positive reference source for ADC this time is set to AVCC. AVSS is the negative voltage source for both examples. AVCC is same as the system bus voltage, i.e. 3.3V.
configureMemoryParam.inputSourceSelect = ADC12_A_INPUT_A0; configureMemoryParam.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC; configureMemoryParam.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS;
Since we are using interrupt method, relevant interrupt flag is cleared first and then enabled.
ADC12_A_clearInterrupt(ADC12_A_BASE, ADC12IFG0); ADC12_A_enableInterrupt(ADC12_A_BASE, ADC12IE0); __enable_interrupt();
In this case the 0th ADC interrupt flag is used since the channel to be read is the 0th channel of the ADC. Don’t confuse interrupt vector number with interrupt flag number. Interrupt vector number for 0th ADC interrupt flag is 6.
#pragma vector = ADC12_VECTOR __interrupt void ADC12ISR (void) { switch (__even_in_range(ADC12IV, 34)) { case 0: break; //Vector 0: No interrupt case 2: break; //Vector 2: ADC overflow case 4: break; //Vector 4: ADC timing overflow case 6: //Vector 6: ADC12IFG0 { cnt = ADC12_A_getResults(ADC12_A_BASE, ADC12_A_MEMORY_0); break; } case 8: break; //Vector 8: ADC12IFG1 case 10: break; //Vector 10: ADC12IFG2 case 12: break; //Vector 12: ADC12IFG3 case 14: break; //Vector 14: ADC12IFG4 case 16: break; //Vector 16: ADC12IFG5 case 18: break; //Vector 18: ADC12IFG6 case 20: break; //Vector 20: ADC12IFG7 case 22: break; //Vector 22: ADC12IFG8 case 24: break; //Vector 24: ADC12IFG9 case 26: break; //Vector 26: ADC12IFG10 case 28: break; //Vector 28: ADC12IFG11 case 30: break; //Vector 30: ADC12IFG12 case 32: break; //Vector 32: ADC12IFG13 case 34: break; //Vector 34: ADC12IFG14 default: break; } }
ADC interrupt triggers when a new result is loaded in ADC memory location. Inside the interrupt ADC memory location 0 is read to get the conversion result, i.e. ADC count. When the ADC memory is accessed, its interrupt flag is automatically cleared.
In the main loop, the ADC count derived from the ADC interrupt is converted to voltage. Both the voltage and ADC count are displayed on an alphanumerical LCD.
volts = ((cnt * 3300) / 4095); print_I(11, 0, cnt); print_I(11, 1, volts); delay_ms(100);
Demo

|
I am surprised and happy to find this tutorial on the F5529 as TI makes a lot of different devices.
Thank you very much for putting in the extra knowledge in each segment, made reading worthwhile.
Good Work!
lovely tutorial but to be honest I don’t think I’d be investing my time on this board to start with it’s not cheap and readily available as the stm32 boards can you please do more tutorials on stm32 board’s and the stc micros thanks
Hello, I try to program MSP430FR6047 but i get error “the debug interface to the device has been secured”. when flashing using uniflash and when program using CCS this happen. can you help me to solve this problem
You can try “On connect, erase user code and unlock the device” option.
Pingback: Tinkering TI MSP430F5529 – gStore
Hello
I am doing project of msp430g2553 interface(using i2c communication) with temp 100(temperature sensor) and try to read the temperature in dispaly(16*2) but didn’t get the out put (using code composer studio) can u share me any example code for this project
Thank you sir,
Which sensor? Did you use pullup resistors for SDA-SCL pins?
Where is lcd_print.h?
All files and docs are here:
https://libstock.mikroe.com/projects/view/3233/tinkering-ti-msp430f5529
You want the truth? TI makes and sell “underpowered micros”, you know? Low everything, not only the power but also peripherals. So the price is not justified.
Otherwise, if I’ll move there, I’ll introduce them to my small hobby projects – there are still some advantages.
I may even make a visual configuration tool of my own for them…
Yeah the prices of TI products are higher than other manufacturers but I don’t think the hardware peripherals are inferior.
Not inferior but in not enough numbers compared to STM32.
True