Tinkering TI MSP430F5529

|
RTC_A as Counter
As with other timers, counter mode is a secondary feature of RTC_A module. In this mode, the calendar feature of RTC_A is not used. Instead of being an RTC, RTC_A in this mode behaves like a regular timer. However, unlike other regular timers, we cannot get timer count. This does not limit us much from using it for time bases as there are two counters that can be cascaded and, individually and independently prescaled. RTC_A is rarely used in this role because it is only used as such when we have run out of regular timers and have no need for RTC.
Code Example
#include "driverlib.h" #include "delay.h" void clock_init(void); void GPIO_init(void); void RTC_init(void); #pragma vector=RTC_VECTOR __interrupt void RTC_A_ISR(void) { switch (__even_in_range(RTCIV, 16)) { case 0: break; //No interrupts case 2: break; //RTCRDYIFG case 4: //RTCEVIFG { GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7); break; } case 6: break; //RTCAIFG case 8: break; //RT0PSIFG case 10: break; //RT1PSIFG default: break; } } void main(void) { WDT_A_hold(WDT_A_BASE); clock_init(); GPIO_init(); RTC_init(); while(1) { }; } void clock_init(void) { PMM_setVCore(PMM_CORE_LEVEL_3); GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5, (GPIO_PIN4 | GPIO_PIN2)); GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5, (GPIO_PIN5 | GPIO_PIN3)); UCS_setExternalClockSource(XT1_FREQ, XT2_FREQ); UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ); UCS_turnOnLFXT1(UCS_XT1_DRIVE_3, UCS_XCAP_3); UCS_initClockSignal(UCS_FLLREF, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_4); UCS_initFLLSettle(MCLK_KHZ, MCLK_FLLREF_RATIO); UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1); UCS_initClockSignal(UCS_ACLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1); } void GPIO_init(void) { GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setDriveStrength(GPIO_PORT_P1, GPIO_PIN0, GPIO_FULL_OUTPUT_DRIVE_STRENGTH); GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7); GPIO_setDriveStrength(GPIO_PORT_P4, GPIO_PIN7, GPIO_FULL_OUTPUT_DRIVE_STRENGTH); GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7); } void RTC_init(void) { RTC_A_initCounter(RTC_A_BASE, RTC_A_CLOCKSELECT_RT1PS, RTC_A_COUNTERSIZE_16BIT); RTC_A_initCounterPrescale(RTC_A_BASE, RTC_A_PRESCALE_0, RTC_A_PSCLOCKSELECT_SMCLK, RTC_A_PSDIVIDER_4); RTC_A_initCounterPrescale(RTC_A_BASE, RTC_A_PRESCALE_1, RTC_A_PSCLOCKSELECT_RT0PS, RTC_A_PSDIVIDER_16); RTC_A_setCounterValue(RTC_A_BASE, 0); RTC_A_clearInterrupt(RTC_A_BASE, RTC_A_TIME_EVENT_INTERRUPT); RTC_A_clearInterrupt(RTC_A_BASE, RTC_A_PRESCALE_TIMER1_INTERRUPT); RTC_A_enableInterrupt(RTC_A_BASE, RTC_A_TIME_EVENT_INTERRUPT); RTC_A_enableInterrupt(RTC_A_BASE, RTC_A_PRESCALE_TIMER1_INTERRUPT); RTC_A_startClock(RTC_A_BASE); __enable_interrupt(); }
Hardware Setup

Explanation
For simplest-possible demo, we will again make a LED toggler.
Obviously, counter mode is different from regular calendar mode and so we can use different clock settings. Here, we will be using SMCLK and it will be running at 4 MHz.
UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_1);
Both on-board LEDs are used but they are initialized at different logic states.
GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7); GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7);
RTC_A module’s setup this time is obviously different from the last RTC_A example.
void RTC_init(void) { RTC_A_initCounter(RTC_A_BASE, RTC_A_CLOCKSELECT_RT1PS, RTC_A_COUNTERSIZE_16BIT); RTC_A_initCounterPrescale(RTC_A_BASE, RTC_A_PRESCALE_0, RTC_A_PSCLOCKSELECT_SMCLK, RTC_A_PSDIVIDER_4); RTC_A_initCounterPrescale(RTC_A_BASE, RTC_A_PRESCALE_1, RTC_A_PSCLOCKSELECT_RT0PS, RTC_A_PSDIVIDER_16); RTC_A_setCounterValue(RTC_A_BASE, 0); RTC_A_clearInterrupt(RTC_A_BASE, RTC_A_TIME_EVENT_INTERRUPT); RTC_A_clearInterrupt(RTC_A_BASE, RTC_A_PRESCALE_TIMER1_INTERRUPT); RTC_A_enableInterrupt(RTC_A_BASE, RTC_A_TIME_EVENT_INTERRUPT); RTC_A_enableInterrupt(RTC_A_BASE, RTC_A_PRESCALE_TIMER1_INTERRUPT); RTC_A_startClock(RTC_A_BASE); __enable_interrupt(); }
Firstly, the size of the main RTC counter and its clock source are set. Here the clock source is RT1PS. RT0PS and RT1PS are sub-counters. RT0PS is clocked with either SMCLK or ACLK while RT1PS is clocked with SMCLK, ACLK or prescaled RT0PS. Finally, the RTC module’s main counter can be fed with SMCLK, ACLK or prescaled RT1PS. Thus, here the latter codes involve setting these parameters. RT0PS is fed with 4 MHz SMCLK and then a prescalar of 4 is applied. The resultant frequency is a 1 MHz which is used to feed RT1PS. Now RT1PS is further prescaled by 16, resulting in 62.5 kHz clock. This is what that feeds the main counter. Only 16 bits of the 32-bit main counter is used. Thus, the main counter overflows roughly about every second.
Every overflow event triggers an interrupt. Inside the interrupt on-board LEDs are toggled.
#pragma vector=RTC_VECTOR __interrupt void RTC_A_ISR(void) { switch (__even_in_range(RTCIV, 16)) { case 0: break; //No interrupts case 2: break; //RTCRDYIFG case 4: //RTCEVIFG { GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7); break; } case 6: break; //RTCAIFG case 8: break; //RT0PSIFG case 10: break; //RT1PSIFG default: break; } }
Demo

|
I am surprised and happy to find this tutorial on the F5529 as TI makes a lot of different devices.
Thank you very much for putting in the extra knowledge in each segment, made reading worthwhile.
Good Work!
lovely tutorial but to be honest I don’t think I’d be investing my time on this board to start with it’s not cheap and readily available as the stm32 boards can you please do more tutorials on stm32 board’s and the stc micros thanks
Hello, I try to program MSP430FR6047 but i get error “the debug interface to the device has been secured”. when flashing using uniflash and when program using CCS this happen. can you help me to solve this problem
You can try “On connect, erase user code and unlock the device” option.
Pingback: Tinkering TI MSP430F5529 – gStore
Hello
I am doing project of msp430g2553 interface(using i2c communication) with temp 100(temperature sensor) and try to read the temperature in dispaly(16*2) but didn’t get the out put (using code composer studio) can u share me any example code for this project
Thank you sir,
Which sensor? Did you use pullup resistors for SDA-SCL pins?
Where is lcd_print.h?
All files and docs are here:
https://libstock.mikroe.com/projects/view/3233/tinkering-ti-msp430f5529
You want the truth? TI makes and sell “underpowered micros”, you know? Low everything, not only the power but also peripherals. So the price is not justified.
Otherwise, if I’ll move there, I’ll introduce them to my small hobby projects – there are still some advantages.
I may even make a visual configuration tool of my own for them…
Yeah the prices of TI products are higher than other manufacturers but I don’t think the hardware peripherals are inferior.
Not inferior but in not enough numbers compared to STM32.
True