Tinkering TI MSP430F5529

|
Watchdog Timer – WDTA
The prime task of a watchdog timer is to reset a microcontroller should there be any software irresponsiveness. MSP430F5529’s watchdog timer, WDTA can be used like a regular watchdog timer as well as an interval timer. WDTA is similar to the previously seen WDT+ but it is a bit advanced in some areas like 32-bit counter instead of 16-bit counter. Shown below is the block diagram of WDTA:

Unlike the watchdogs of many other microcontrollers, WDTA is password protected and it means that to read/write it, a special code (0x05A) needs to be set first.
Code Example
#include "driverlib.h" #include "delay.h" void clock_init(void); void GPIO_init(void); void WDTA_init(void); void main(void) { WDT_A_hold(WDT_A_BASE); clock_init(); GPIO_init(); WDTA_init(); while(1) { GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0); delay_ms(600); WDT_A_resetTimer(WDT_A_BASE); if(GPIO_getInputPinValue(GPIO_PORT_P1, GPIO_PIN1) == false) { GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7); while(1); } }; } void clock_init(void) { PMM_setVCore(PMM_CORE_LEVEL_3); GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5, (GPIO_PIN4 | GPIO_PIN2)); GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P5, (GPIO_PIN5 | GPIO_PIN3)); UCS_setExternalClockSource(XT1_FREQ, XT2_FREQ); UCS_turnOnXT2(UCS_XT2_DRIVE_4MHZ_8MHZ); UCS_turnOnLFXT1(UCS_XT1_DRIVE_3, UCS_XCAP_3); UCS_initClockSignal(UCS_FLLREF, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_4); UCS_initFLLSettle(MCLK_KHZ, MCLK_FLLREF_RATIO); UCS_initClockSignal(UCS_SMCLK, UCS_XT2CLK_SELECT, UCS_CLOCK_DIVIDER_2); UCS_initClockSignal(UCS_ACLK, UCS_XT1CLK_SELECT, UCS_CLOCK_DIVIDER_1); } void GPIO_init(void) { GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1); GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setDriveStrength(GPIO_PORT_P1, GPIO_PIN0, GPIO_FULL_OUTPUT_DRIVE_STRENGTH); GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7); GPIO_setDriveStrength(GPIO_PORT_P4, GPIO_PIN7, GPIO_FULL_OUTPUT_DRIVE_STRENGTH); GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); GPIO_setOutputLowOnPin(GPIO_PORT_P4, GPIO_PIN7); } void WDTA_init(void) { WDT_A_initWatchdogTimer(WDT_A_BASE, WDT_A_CLOCKSOURCE_VLOCLK, WDT_A_CLOCKDIVIDER_32K); WDT_A_start(WDT_A_BASE); WDT_A_resetTimer(WDT_A_BASE); }
Hardware Setup

Explanation
After power-on reset, WDTA is configured in watchdog mode with an approximate initial 32 ms reset interval. Unless commanded to stop immediately, it will keep resetting MCU. This is why at the start of every program the following code is placed:
WDT_A_hold(WDT_A_BASE);
This piece of code disables WDTA until reconfigured and reused.
To setup WDTA in watchdog mode, we need to specify its source of clock signal. In this example, it is VLOCLK. We also need to decide the WDTA clock divider in order to achieve the required amount of period.
void WDTA_init(void) { WDT_A_initWatchdogTimer(WDT_A_BASE, WDT_A_CLOCKSOURCE_VLOCLK, WDT_A_CLOCKDIVIDER_32K); WDT_A_start(WDT_A_BASE); WDT_A_resetTimer(WDT_A_BASE); }
Here the time period according to the settings is about 3 seconds (32000 / 10 kHz). If WDTA is not reset within this time window, a reset will be triggered.
In the main, P1.0 LED is toggled every 600ms and WDTA is reset. Thus, WDTA counter is reset 5 times earlier than reset interval. This goes on until P1.1 push button is pressed. When the button is pressed, P4.7 LED is lit and a predefined intentional software loop is entered. Since WDTA counter is no longer reset in the loop, WDTA counter keeps ticking and a reset occurs after 3 seconds, starting everything from the beginning.
GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0); delay_ms(600); WDT_A_resetTimer(WDT_A_BASE); if(GPIO_getInputPinValue(GPIO_PORT_P1, GPIO_PIN1) == false) { GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7); while(1); }
Note that after reset, RAM data are usually not erased unless modified or reinitialized. However, in real life applications, RAM data may be corrupted because something unusual caused the reset to occur. Therefore, we can use CRC or other means to check RAM data integrity if past data are needed.
Demo


|
I am surprised and happy to find this tutorial on the F5529 as TI makes a lot of different devices.
Thank you very much for putting in the extra knowledge in each segment, made reading worthwhile.
Good Work!
lovely tutorial but to be honest I don’t think I’d be investing my time on this board to start with it’s not cheap and readily available as the stm32 boards can you please do more tutorials on stm32 board’s and the stc micros thanks
Hello, I try to program MSP430FR6047 but i get error “the debug interface to the device has been secured”. when flashing using uniflash and when program using CCS this happen. can you help me to solve this problem
You can try “On connect, erase user code and unlock the device” option.
Pingback: Tinkering TI MSP430F5529 – gStore
Hello
I am doing project of msp430g2553 interface(using i2c communication) with temp 100(temperature sensor) and try to read the temperature in dispaly(16*2) but didn’t get the out put (using code composer studio) can u share me any example code for this project
Thank you sir,
Which sensor? Did you use pullup resistors for SDA-SCL pins?
Where is lcd_print.h?
All files and docs are here:
https://libstock.mikroe.com/projects/view/3233/tinkering-ti-msp430f5529
You want the truth? TI makes and sell “underpowered micros”, you know? Low everything, not only the power but also peripherals. So the price is not justified.
Otherwise, if I’ll move there, I’ll introduce them to my small hobby projects – there are still some advantages.
I may even make a visual configuration tool of my own for them…
Yeah the prices of TI products are higher than other manufacturers but I don’t think the hardware peripherals are inferior.
Not inferior but in not enough numbers compared to STM32.
True